Реферат: Цифровая подпись

(((UINT4)mdContext->in[ii+1]) << 8) |

((UINT4)mdContext->in[ii]);

Transform (mdContext->buf, in);

Сохранение буфера в digest(т. е. получение окончательного Message Digest):

for (i = 0, ii = 0; i < 4; i++, ii += 4)

{

mdContext->digest[ii] = (unsigned char)(mdContext->buf[i] & 0xFF);

mdContext->digest[ii+1] = (unsigned char)((mdContext->buf[i] >> 8) & 0xFF);

mdContext->digest[ii+2] = (unsigned char)((mdContext->buf[i] >> 16) & 0xFF);

mdContext->digest[ii+3] = (unsigned char)((mdContext->buf[i] >> 24) & 0xFF);

}

void Transform(register UINT4 *buf, register UINT4 *in)

Данная функция является основным шагом в алгоритме MD5.

Входными параметрами являются указатель на буфер buf[] из структуры MD5_CTX и указатель на буфер in[], хранящем значения типа UINT4. Функция выполняет 4 цикла по 16 шагов в каждом. В каждом цикле используется одна из функций FF, GG, HH, II. Далее окончательный результат после 64-х преобразовательных итераций добавляется к содержимому буфера buf[].

Структура MD5_CTX

Структура MD5_CTX является основной структурой для формирования MessageDigest. Структура содержит следующие поля:

typedef struct

{

UINT4 i[2]; /* количество бит в сообщении по mod 2^64 */

UINT4 buf[4]; /* временный буфер */

unsigned char in[64]; /* входной буфер */

unsigned char digest[16]; /* содержит действительный Message Digest

после вызова MD5Final() */

} MD5_CTX;

Цифровая подпись и криптосистемы с ключом общего пользования.

Если использовать алгоритмы хэширования вместе с криптосистемами с ключом общего пользования, то можно создать цифровую подпись, гарантирующую подлинность полученного набора данных, аналогично тому, как рукописная подпись, подтверждает аутентичность напечатанного документа. Криптосистема с ключом общего пользования - это метод, позволяющий осуществлять кодирование и декодирование информации, с помощью двух исходных ключей: ключа общего пользования, свободно передаваемого всем желающим, и личного ключа, известного только его владельцу.

Смысл ключа и пароля примерно одинаков. Допустим, Том желает, чтобы Сэм мог отправить ему зашифрованный документ, и оба они не хотели бы рисковать, передавая пароль или ключ по линиям связи, так как в этом случае он может быть кем-то перехвачен. Тогда Том может передать Сэму свой ключ общего пользования (схема 1).

Используя этот ключ, Сэм шифрует документ и отправляет его Тому. Том дешифрует документ с помощью своего личного ключа. Это единственный ключ, с помощью которого можно восстановить документ, зашифрованный с применением ключа общего пользования, принадлежащего Тому. Тот факт, что ключ общего пользования Тома может стать кому-то известен, не имеет особого значения, потому что он абсолютно бесполезен для расшифровки документа. А личный ключ, известный одному лишь Тому, по открытым линиям связи не передавался; теоретически том хранит его только в собственной памяти и наоборот, работа других криптосистем с ключом общего пользования строится на обратном принципе: Сэм шифрует документ с помощью своего личного ключа и передает свой ключ общего пользования Тому, с помощью которого тот мог бы расшифровать этот документ. Существующие ныне криптосистемы с ключом общего пользования, такие, например, как система RSA (сокращение, составленное из первых букв фамилий трех создателей этого алгоритма), широко используются.

Как же осуществляется цифровая подпись? Рассмотрим еще один пример. Допустим, Сэм собирается отправить Тому контракт или номер своей кредитной карточки в цифровом виде. Для подтверждения подлинности этих документов Тому необходима цифровая подпись Сема. Сначала Сэм отправляет свой документ. Затем использует алгоритм хэширования для вычисления идентификатора этого документа, шифрует хэшированное значение с помощью своего личного ключа и отправляет его Тому. Это и есть цифровая подпись Сэма. Том с помощью того же алгоритма хэширования сначала вычисляет идентификатор принятого документа. Затем он расшифровывает значение, которое получил от Сэма, используя предоставленный Сэмом ключ общего пользования. Если два значения хэширования совпали, Том не только узнает, что этот документ подлинный, но и то, что подпись Сэма действительна. Понятно, что проведение коммерческих транзакций по такому сценарию значительно безопаснее, чем с использованием подписи от руки на бумаге, которую можно подделать. А если сведения, передаваемые Сэмом Тому, конфиденциальны (например, содержат номер кредитной карточки), то и их можно зашифровать так, чтобы прочитать их смог только Том.

К-во Просмотров: 488
Бесплатно скачать Реферат: Цифровая подпись