Реферат: Туннельные и барьерные эффекты.

(приведенные выше выражения для R и D позволяют непосредст­венно убедиться в справедливости этого равенства).

По классической механике, если E > Um , должно иметь место R =0, D=1барьер совершенно прозрачен. Из (15) следует, что | В| 2 ≠0 поэтому в квантовой механике R > О, D < 1. Частицы частью отражаются так же, как отражаются световые волны
на границе двух сред.

Если энергия частицы Е меньше высоты барьера Um , то по классической механике имеет место полное отражение D = 0, R=1. При этом частицы совсем не проникают внутрь барьера. В оптике такой случай отвечает полному внутреннему отражению. Согласно геометрической оптике лучи света не проникают во вторую среду.

Более тонкое рассмотрение на основе волновой оптики пока­зывает, что в действительности световое поле при полном отра­жении все же проникает в среду, от которой происходит отражение и если эта среда представляет собой очень тонкую пластинку, то свет частично проходит через нее. Квантовая механика в слу­чае Е < Um (случай отражения) приводит к выводу, аналогичному выводу волновой оптики. Действительно, если E < Um , то показатель преломления пт является, чисто пт мнимой величиной (см. 4). Поэтому мы положим

(20)

Внося это выражение для пт в (14), вычислим теперь |а|2 . Тогда, считаяполучаем

(21)

Обозначая первый дробный множитель через Do (он не очень отличается от 1) и имея в виду значение k 6 , получаем

(22)

Таким образом, при E <. Um , в противоположность выводам классической механики, частицы проходят через барьер.

Явление прохождения через потенциальный барьер получило образное название туннельного эффекта.

Очевидно, что туннельный эффект будет иметь заметное зна­чение лишь в тех случаях, когда D не слишком мал, т. е. когда

(23)

Нетрудно видеть, что с туннельным эффектом мы можем встре­титься лишь в области микроскопических явлений. Так, например, для Um E ~ 10-11 эрг (около десяти электрон-вольт),μ ~ 10-11 (масса электрона) и l ~ 10-11 c м, из (22) получим D ~ e -1 . Но если мы возьмем, например, l =1 см, то из той же формулы получим,. Увеличение массы частицы и превышение Um над Е еще более уменьшат D. Подобным же образом можно пока­зать, что рассмотренное выше отражение исчезает с ростом энер­гии частицы — квантовая механика переходит в классическую.

Формулу (22) для коэффициента прозрачности D , выведен­ную нами для прямоугольного барьера, мы можем обобщить и на случай барьера произвольной формы. Произведем сейчас это обобщение простым путем.

Пусть имеем потенциальный барьер U (x), изображенный на рис. 1, Представим его приближенно в виде совокупностипрямоугольных барьеров с шириной dx и высотой U (х). Эти барьеры на рисунке заштрихованы. Частица, имеющая энергию Е, вступает в барьер в точке х = х1 и покидает его в точке х = х2 . Согласно (22) коэффициент прозрачности для одного из этих элементарных барьеров равен

(потенциальная энергия U (х) должна быть достаточно плавной, чтобы dx можно было взять достаточно большим). Коэффициент прозрачности для всего барьера должен равняться произведению коэффициентов прозрачности для всех элементарных барьеров. Тогда показатели в формуле для D ' сложатся, и мы получим

(24)

§ 2. Кажущаяся парадоксальность «туннельного эффекта»

Прохождение частиц через потенциальные барьеры представ­ляется на первый взгляд парадоксальным. Эту парадоксальность усматривают в том, что частица, находящаяся внутри потенциаль­ного барьера при полной энергии Е, меньшей высоты барьера Um , должна иметь отрицательную кинетическую энергию, и полная энергия, как это имеет место в классической меха­нике, является суммой энергий кинетической и потенциальной:

В области, где,U (х) >Е, это бессмысленно, так как импульс р естьдействительная величина. Как раз эти области, как мы знаем из классической механики недоступны для частицы. Между тем, согласно квантовой механике, частица может быть обнаружена и в этой «запретной» области. Таким образом, полу­чается, будто квантовая механика приводит к выводу, что кине­тическая энергия частицы может быть отрицательной, а импульс частицы мнимым. Этот вывод и называют парадоксом «туннель­ного эффекта».

На самом деле здесь нет никакого парадокса, а сам вывод неверен. Дело в том, что, поскольку туннельный эффект естьявление квантовое (при ħ → 0 коэффициент прозрачности D (24) стремится к нулю), постольку он может обсуждаться лишь в рам­ках квантовой механики. Полную же энергию частицы можно
рассматривать как сумму кинетической и потенциальной энергий
только на основе классической механики. Формула
предполагает, что одновременно знаем величину как кинетиче­ской энергии Т, так и потенциальной U {х). Иными словами, мы приписываем одновременно определенное значение координате частицы х и ее импульсу р, что противоречит квантовой меха­нике. Деление полной энергии на потенциальную и кинетическую
в квантовой механике лишено смысла, а вместе с тем несостоятелен и парадокс, основанный на возможности представить полную энергию Е как сумму кинетической энергии (функция импульса) и потенциальной энергии (функция координат).

Остается лишь посмотреть, не может ли все же оказаться так, что путем измерения положения частицы мы обнаружим ее внутри потенциального барьера, в то время как ее полная энергия меньше высоты барьера. I

Обнаружить частицу внутри барьера действительно можно, даже если E <. Um ; однако если фиксируется координата частицы х, при этом создается, согласно соотношению неопределенности, дополнительная дисперсия в импульсетак что уже нельзяутверждать, что энергия частицы, после того как определили ее положение, равна Е.

Из формулы для коэффициента прозрачности следует, что частицы проникают заметным образом лишь на глубину I , определяемую равенством (23). Чтобы обнаружить частицу внутри барьера, мы должны фиксировать ее координату с точностью ∆x < l. Но тогда неизбежно возникает дисперсия импульса

Подставляя сюда l2 из (23), находим (2.1)

т. е. изменение кинетической энергии частицы, вносимое вмешательством измерения, должно быть больше той энергии, кото­рой ей недостает до высоты барьера Um . Приведем еще пример, иллюстрирующий это утверждение. Определить координату частицы, находящейся внутри потенциального барьера таким путем, что будем посылать - узкий пучок света в направлении, перпендикулярном к направлению движения частицы. Если пучок рассеется, то значит, на его пути попалась частица.

Как объяснялось выше, точность нашего измерения должна быть такова ∆X<l;с другой стороны, нельзя создать пучок света, ширина которого была бы меньше длины световой волны λ а следовательно, длина волны света должна быть меньше l, т. е.

(2.2)

так как, где ω—частота световых колебаний, а с- скорость света,то отсюда следует, что

Встречающиеся в нерелятивистской механике энергии должны быть меньше собственной, энергии частицы μс2 , поэтому

(2.3)

т. е. энергия применяемых в световом пучке квантов света должна быть больше, нежели разность между высотой потенциального барьера и энергией частицы. Таким образом, этот пример иллюстрирует положение о необходимости применить для измерения координаты приборы, обладающие достаточно боль­шой энергией, чтобы можно было локализовать частицу.

§ 3. Холодная эмиссия электронов из металла

Если к металлу приложить большое электрическое поле (порядка 106 в/см) так; чтобы он являлся катодом, то такое поле вырывает электроны; получается электрический ток. Это явление получило название «холодной эмиссии». Она может быть легко истолковано на основе квантовой теории прохождения частиц через потенциальный ба­рьер и притом, в общих чертах, в согласии с опытом.

Рис 3.1. Поле на границе металла.


Рассмот­рим теорию этого эффекта, пред­ставляющую одно из наиболее
простых приложений теории прохождения через потенциальный
барьер. Обратимся сначала к картине движения электронов в
металле в отсутствие внешнего электрического поля.

К-во Просмотров: 439
Бесплатно скачать Реферат: Туннельные и барьерные эффекты.