Реферат: Твердое тело как электрическая система

Кристаллы, элементами структуры которых являются не ионы, а нейтральные группы, и при тепловом движении не отделяют ионов. Большею частью ток в них вызывается полярными примесями или отщеплением электронов. В то время как теория строения и электрических свойств полярных кристаллов хорошо изучена, для нейтральных или гомеополярных кристаллов нет еще ни теории, ни сколь-нибудь полного опытного материала, позволяющего попять механизм электропроводности.

Группировка атомов внутри кристалла может вызываться не только внешними причинами — примесями или изменением условий роста. Силы взаимодействия часто связывают большие группы атомов (иногда до миллиона) в одно целое, которое подвергается влиянию теплового движения, электрических и магнитных сил. Явление это мы называем молекулярным полем в кристалле. Впервые оно было обнаружено на явлении ферромагнетизма железа, кобальта и никеля. Способность магнитных атомов этих тел устанавливаться под действием магнитных сил в сравнительно слабых полях, несмотря на стремление теплового движения разбросать их по всем направлениям, можно было объяснить только допущением, что атомы этих кристаллов объединены в большие комплексы, способные противостоять тепловому движению.

Необычайная чувствительность современных радиоприемников позволяет непосредственно наблюдать, как при намагничивании железа один за другим поворачиваются эти сложные магнитные комплексы.

Здесь молекулярное поле обнаруживается благодаря тому, что атомы железа магнитны. Если же они являются электрическими, а не магнитными диполями, то они должны обнаружить в электрическом поле явления, аналогичные тем, которые наблюдаются в железе в магнитном поле. Действительно, И. В. Курчатов подтвердил существование этой аналогии на примере кристаллов сегнетовой соли. Как ферромагнитные тела в миллион раз более магнитны, чем другие вещества, так и в сегнетовой соли диэлектрическая постоянная достигает 25000 против 2-f-10 в других кристаллах. И в этом случае обнаружено явление насыщения и ряд тепловых эффектов, совершенно аналогичных тем, которые характеризуют поведение железа в магнитном поле.

При некоторой температуре, обычно лежащей ниже температуры плавления кристалла, тепловое движение разрушает молекулярное поле, разбивает комплексы и кристалл лишается своих исключительных свойств. У ферромагнитных тол эта температура носит название точки Кюри; для железа она равна 780°С, для никеля она составляет 356°С. У сегнетовой соли подобная температура достигает 24°С. Замечательно, что исчезновение комплексов в кристалле мало сказывается на его структуре, но оно сопровождается поглощением энергии.

Существование комплексов и молекулярного поля в кристалле не есть результат магнитных или электрических моментов атомов. Комплексы создаются молекулярными силами и в первую очередь квантовыми обменными силами. Если элементы этих комплексов обладают магнитным моментом, то мы замечаем исключительные магнитные свойства; если они обладают электрическими диполями, то комплексы проявляются в необычных диэлектрических свойствах. Если же атомы элементов не имеют ни магнитного, ни электрического моментов, то и этих свойств не наблюдается; однако по ходу теплоемкости в точке Кюри можно заметить исчезновение комплексов по изменению энергии кристалла.

Не останавливаясь на других свойствах кристаллов, тепловых и оптических явлениях, которые точно так же объясняются изложенной картиной кристалла как правильно построенной системой электрических зарядов, собранных в атомы и комплексы, рассмотрим еще вопрос об абсолютной величине молекулярных сил. Ограничимся ионными кристаллами, где вопрос решается особенно просто; в качестве примера выберем каменную соль.

Рентгеновский анализ дает точное значение расстояния между ионами натрия и хлора, равное 2.81 Х10-8 см. Заряд этих ионов нам также точно известен: он равен 4.77 Х10-10 абс. ед. Два иона притягиваются, следовательно, с силой, равной произведению их зарядов, делеп-ному на квадрат расстояния, т. е. с силой около 3 · 10-4 дин. На 1 мм2 приходится около 103 ионов, следовательно, сила, их притягивающая, равна 3 · 10-4 Х 10-3 = 3 · 109 дип, или 3000 кГ. Этот подсчет очень неточен. Мы совсем не учитывали влияния па данный ион всех других ионов, кроме того, который расположен прямо против него. Мы не учли далее нарушения правильности решетки, вносимого тепловым движением. Если сделать эти поправки,то окажется, что каждый слой ионов в решетке каменной соли притягивается соседним слоем с силой, примерно-равной 200 кГ на 1 мм2 поверхности слоя.

Если для проверки этого подсчета мы попытается разорвать кусок соли, то найдем, что он разрывается при напряжении 400 Г, а не 200 кГ на 1 мм2 , т. е. при напряжении, в 500 раз меньшем. Можно было бы предположить, что это расхождение вызвано не ошибочностью теории, а неправильностью опыта. При разрыве соли отрыв происходит не по всему сечению сразу, а, начиная от маленькой трещины на поверхности, постепенно распространяется через все сечение. Ясно, что в этом случае для; разрыва нужно приложить силу, во много раз меньшую, так как она разрывает в каждый данный момент не всю> площадь, а только очень маленький ее участок, для разрыва которого этой силы достаточно. Если это так, фп· можно было ожидать, что, устранив трещины на поверхности, мы затрудним разрыв. Действительно, когда попытались разорвать образец соли, помещенный в теплую воду, которая растворяла его поверхность, не давай образоваться трещинам, то оказалось, что для разрыва' потребовалось не 400 Г, а 160 кГ на 1 мм2 , т. е. примерно столько, сколько и следовало ожидать. Другой опыт, давший такой же результат, был произведен с шариком из соли, охлажденным в жидком воздухе и затем внезапно внесенным в расплавленный свинец. Здесь на поверхности вообще не возникает растяжений, и поэтому имеющиеся трещины не могут распространиться вовнутрь. В центре же шара создается всестороннее растяжение до 70 кГ на 1 мм2 , которое, однако, кристалла не разрушает.

Каковы бы ни были технические перспективы доведения механической (и электрической) прочности и диэлектрической постоянной до их теоретического предела, самый факт столь значительного расширения пределов использования материалов достаточно интересен. Поскольку экспериментально обнаружен и твердо установлен факт возрастания механической прочности твердых тел, ясно, что раньше или позже он будет использован техникой, войдет в жизнь.

К-во Просмотров: 135
Бесплатно скачать Реферат: Твердое тело как электрическая система