Реферат: Управление структурно-механическими свойствами материалов
Если |U отт | > |U пр |, то преобладают силы отталкивания, коагуляция не происходит, золь является агрегативно устойчивым. В противоположном случае преобладают силы притяжения между частицами, происходит коагуляция.
Рассмотрим количественную интерпретацию этих сил.
Электростатическое отталкивание между мицеллами возникает при перекрывании диффузных слоёв противоионов. Энергия этого взаимодействия:
,
где h – расстояние между частицами; - величина, обратная толщине диффузного слоя δ; A – величина, не зависящая от h и определяемая параметрами ДЭС.
Величины א и A могут быть рассчитаны на основе теории ДЭС.
Расчёты показывают, что энергия отталкивания уменьшается:
· при увеличении зарядов противоионов и их концентрации ;
· при уменьшении по абсолютной величине φо и z -потенциала .
Из уравнения следует, что U отт убывает с увеличением расстояния между частицами h по экспоненциальному закону.
Энергия притяжения связана, главным образом, с дисперсионным взаимодействием между молекулами. Она может быть рассчитана по уравнению
Жидкообразные и твердообразные тела. Ньютоновские и неньютовские жидкости. Псевдопластические и дилатантные жидкообразные тела. Уравнение Оствальда-Вейля. Бингамовские и небингамовские твердообразные тела. Тиксотропия и реопексия
Предложенная П.А. Ребиндером классификация структур дисперсных систем помогает связать механические свойства тел с их строением.
В соответствии с реологическими свойствами все реальные тела делят на жидкообразные (предел текучести равен нулю, РТ = 0) и твердообразные (РТ > 0).
Жидкообразные тела классифицируют на ньютоновские и неньютоновские жидкости . Ньютоновские жидкости – это системы, вязкость которых не зависит от напряжения сдвига и является постоянной величиной в соответствии с законом Ньютона. Течение неньютоновских жидкостей не следует закону Ньютона, их вязкость зависит от напряжения сдвига. Неньютоновские жидкости подразделяются на стационарные , реологические свойства которых не меняются во времени, и нестационарные , для которых эти характеристики зависят от времени. Неньютоновские стационарные жидкости подразделяются на псевдопластические и дилатантные (рис. 4.1.2.1 и 4.1.2.2).
Исходя из экспериментальных исследований, графические зависимости напряжения сдвига от скорости деформации в логарифмических координатах часто линейны и различаются только тангенсом угла наклона прямой, поэтому общую зависимость напряжения сдвига Р от скорости деформации g можно выразить в виде степенной функции:
,
где k и n – постоянные, характеризующие данную жидкообразную систему.
Двухпараметрическое уравнение – математическая модель Оствальда-Вейля : ньютоновская вязкость h неньютоновской стационарной жидкости определяется уравнением
.
При n = 1 жидкость ньютоновская (кривая 1 рис. 4.1.2.1). Отклонение n от 1 характеризует степень отклонения свойств жидкости от ньютоновских.
Разбавленные дисперсные системы с равноосными частицами обычно – ньютоновские жидкости. Псевдопластические жидкости – суспензии с асимметричными частицами, растворы полимеров производные целлюлозы). Дилатантные жидкости в химической технологии встречаются редко, их свойствыа характерны для некоторых керамических масс. Дилатантное поведение наблюдается у дисперсных систем с большим содержанием твердой фазы.
Твердообразные дисперсные системы подразделяют на бингамовские и небингамовские , поведение которых описывается уравнением:
При n = 1 (рис. 4.1.2.2) – бингамовское тело; n > 1 – пластическое дилатантное тело; n < 1 – псевдопластическое твердообразное тело.
К бингамовским твердообразным телам по реологическим свойствам близки пульпы, шламы, буровые растворы, зубные пасты и т.п.
Для нестационарных систем характерны явления тиксотропии и реопексии.
Тиксотропия – специфическое свойство коагуляционных структур, выражается в восстановлении контактов в разрушенной структуре между частицами дисперсной фазы вследствие подвижности среды и броуновского движения частиц.
Реопексия – возрастание прочности структуры со временем при действии напряжения сдвига (т.е. это явление, противоположное тиксотропии).