Реферат: Установки постоянного тока с аккумуляторными батареями

- Низкий уровень электролита в банках, что приводит к соприкосновению электродов с воздухом;

- Длительное хранение батареи в разряженном состоянии (После разряда батарею необходимо сразу зарядить);

- Постоянные недозаряды аккумуляторов;

- Высокая плотность электролита (Не доливать в аккмуляторы электролит); Попадание посторонних примесей в электролит ( Доливать только дистиллированную воду);

- Повышение температуры окружающей среды;

- Повреждение внутреннего сепаратора аккумулятора из-за неправильного обслуживания или вследствие процесса старения;

- Повышенный саморазряд.


2. Рабочие режимы аккумуляторной батареи и электрические схемы установки постоянного тока

2.1 Режим работы аккумуляторных батарей

Применяются два режима работы аккумуляторных батарей: заряд-разряд и постоянный подзаряд.

Режим заряд-разряд характеризуется тем, что после заряда аккумуляторной батареи зарядное устройство отключается и батарея питает постоянную нагрузку (лампы сигнализации, приборы управления), периодически кратковременную нагрузку (электромагнитные приводы выключателей) и аварийную нагрузку. Разряженная до определенного напряжения батарея вновь подключается к зарядному агрегату, который, заряжая батарею, одновременно питает нагрузку.

Для батареи, работающей по методу заряд-разряд, один раз в три месяца производится уравнительный заряд (перезарядка).

Режим постоянного подзаряда заключается в следующем. Батарея непрерывно подзаряжается от подзарядного агрегата, и поэтому она находится в любой момент в состоянии полного заряда. Толчковые нагрузки, возникающие в сети постоянного тока, воспринимает аккумуляторная батарея. Один раз в месяц батарея, работающая в режиме постоянного подзаряда должна быть заряжена от зарядного агрегата.

Для осуществления режима заряд-разряд применяют схему аккумуляторной батареи с двойным элементным коммутатором. В качестве зарядного агрегата применен двигатель-генератор. Генератор присоединен к шинам через предохранители, автомат максимального тока с реле обратного тока, амперметр и переключатель на два положения.

Максимальный автомат защищает генератор от перегрузки. Реле обратного тока отключает генератор, если его ЭДС станет меньше напряжения на шинах батареи. Это может произойти при уменьшении скорости вращения генератора, исчезновении напряжения переменного тока, питающего двигатель, и от других причин. Если в это время не отключить генератор, то он, перейдя в режим двигателя, станет нагрузкой для батареи.

Общее число аккумуляторов, соединяемых в батарею, должно быть таким, что даже разряженные до минимального напряжения элементы должны обеспечить на шинах батареи номинальное напряжение.

Если нагрузка сети незначительна, то агрегат может отдавать ток в сеть и одновременно заряжать аккумуляторную батарею. Однако к концу заряда генератор дает напряжение больше того, при котором обычно работает сеть. Если включить в сеть реостат, то за счет падения напряжения в нем можно уменьшить напряжение. Но это неэкономично. Простым решением задачи одновременной работы генератора на сеть и на заряд является применение в схеме двухэлементного коммутатора. Последний дает возможность использовать разность между напряжением генератора и напряжением сети для заряда группы аккумуляторов, присоединенных к коммутатору.

Аккумуляторные батареи располагаются в специальном помещении подвального или первого этажа здания электростанции или подстанции. Помещение должно быть сухим, не подвергающимся резким изменениям температуры, тряске или колебаниям. Вход в помещение делается с тамбуром. Температура помещения на уровне расположения аккумуляторов не должна быть ниже 10о . Помещение аккумуляторной должно иметь приточно-вытяжную вентиляцию.

2.2 Схема без коммутатора, но с ответвлениями от батареи

На подстанциях эксплуатируются аккумуляторные батареи с элементным коммутатором или без него. Схема установки с элементным коммутатором представлена на рис. 2.1. В ней имеется зарядный двигатель-генератор 1 и подзарядное выпрямительное устройство 5 . Элементный коммутатор 2 обеспечивает постоянство напряжения на шинах постоянного тока при заряде и разряде аккумуляторов. Он состоит из изолирующей плиты с расположенными на ней контактными пластинами, к которым подсоединены отводы от соединительных полос аккумуляторов. По пластинам и соответствующим шинам скользят щетки разрядная 3 и зарядная 4.

Они приводятся в движение вручную или от небольшого электродвигателя, управляемого дистанционно или с помощью устройства регулирования напряжения (АРН). Изменение числа подключенных к шинам постоянного тока аккумуляторов (регулирование напряжения) происходит без разрыва цепи тока и закорачивания аккумуляторов благодаря особой конструкции коммутаторов. В нормальном режиме работы при наличии подзарядного устройства разрядная щетка коммутатора (через нее теперь проходит небольшой подзарядный ток IПЗ) устанавливается на 107-м элементе, чем обеспечивается на шинах напряжение 230 В. Концевые аккумуляторы с порядковыми номерами 108-125 не подзаряжаются. Они используются только в случае исчезновения напряжения на шинах с. н. подстанции и отключения подзарядного устройства.

На рис. 2.2 представлена схема аккумуляторной батареи без элементного коммутатора с ответвлениями от батареи для питания потребителей с различными требованиями к значению напряжения на шинах. При нормальной работе установки выпрямитель VS питает всех потребителей и подзаряжает всю батарею током IПЗ . Ответвление от аккумулятора с порядковым номером 108 дает возможность поддерживать на шинах напряжение около 230 В. В тех режимах работы (например, дозарядке), когда напряжение на элементах возрастает, а требования к значению напряжения остаются прежними (на шинах управления 230 В), предусмотрено ответвление от 100-го элемента батареи. Переключателем SA к шинам управления подключают 100 элементов, и напряжение на шинах будет равно 2,3×100=230 В. Некоторое повышение напряжения по сравнению с номинальным на шинах питания силовой нагрузки не представляет опасности для мощных приводов выключателей, так как при их срабатывании напряжение на шинах мгновенно понижается.

Рис. 2.1. Схема аккумуляторной установки с элементным коммутатором: I - цепи управления; II - аварийное освещение; III - силовые цепи (электромагниты включения); IН - ток нагрузки; IПЗ - ток подзаряда

Рис. 2.2. Схема аккумуляторной установки без элементного коммутатора, работающей в режиме постоянного подзаряда: I, II, III, IПЗ - то же, что на рис. 2.1.

Для формирования пластин и глубоких перезарядов предусматривают передвижной двигатель-генератор, который при необходимости доставляют на подстанцию.

Схема распределения оперативного тока. От шин постоянного тока отходят цепи, питающие группы электроприемников различного назначения. Цепи управления, сигнализации и аварийного освещения обычно защищаются автоматическими выключателями, цепи питания электромагнитов включения - предохранителями.

При централизованном распределении оперативного тока для питания силовых цепей выключателей вблизи их приводов имеются шинки постоянного тока, соединенные между собой кабелями по кольцевой схеме (рис. 2.3). Для надежности питания кольцо секционируется при помощи установленных в шкафах секционных рубильников Р1-2, Р3-4 . Секции кольца питаются от шин постоянного тока отдельными линиями.

К-во Просмотров: 204
Бесплатно скачать Реферат: Установки постоянного тока с аккумуляторными батареями