Реферат: Устройство трансформаторов 2
Магнитопровод. Трансформаторы в зависимости от конфигурации магнитопровода подразделяют на стержневые, броневые и тороидальные.
В стержневом трансформаторе (рис. 213, а) обмотки 2 охватывают стержни магнитопровода 1; в броневом (рис. 213,б), наоборот, магнитопровод 1 охватывает частично обмотки 2 и как бы
Рис. 213. Принципиальные схемы стержневого (а), броневого (б) и тороидального (в) трансформаторов бронирует их; в тороидальном (рис. 213, в) обмотки 2 намотаны на магнитопровод 1 равномерно по всей окружности.
Трансформаторы большой и средней мощности обычно выполняют стержневыми. Их конструкция более простая и позволяет легче осуществлять изоляцию и ремонт обмоток. Достоинством их являются также лучшие условия охлаждения, поэтому они требуют меньшего расхода обмоточных проводов. Однофазные трансформаторы малой мощности чаще всего выполняют броневыми и тороидальными, так как они имеют меньшую массу и стоимость по сравнению со стержневыми трансформаторами из-за меньшего числа катушек и упрощения процесса сборки и изготовления. Тяговые трансформаторы с регулированием напряжения на стороне низшего напряжения — стержневого типа, а с регулированием на стороне высшего напряжения — броневого типа.
Магнитопроводы трансформаторов (рис. 214) для уменьшения потерь от вихревых токов собирают из листов электротехнической
Рис. 214. Магнитопроводы однофазного тягового (а) и силового трехфазного (б) трансформаторов: 1 — стержень; 2 — ярмовые балки; 3 — стяжные шпильки; 4 — основание для установки катушек; 5 — ярмо
стали толщиной 0,35 или 0,5 мм. Обычно применяют горячекатаную сталь с высоким содержанием кремния или холоднокатаную сталь. Листы изолируют один от другого тонкой бумагой или лаком. Стержни магнитопровода трансформатора средней мощности имеют квадратное или крестовидное сечение, а у более мощных трансформаторов — ступенчатое, по форме приближающееся к кругу (рис. 215, а). При такой форме обеспечивается минимальный периметр стержня при заданной площади поперечного сечения, что позволяет уменьшить длину витков обмоток, а следовательно, и расход обмоточных проводов. В мощных трансформаторах между отдельными стальными пакетами из которых собираются стержни, устраивают каналы шириной 5—6 мм для циркуляции охлаждающего масла. Ярмо, соединяющее стержни, имеет обычно прямоугольное сечение, площадь которого на 10—15% больше площади сечения стержней. Это уменьшает нагрев стали и потери мощности в ней.
В силовых трансформаторах магнитопровод собирают из прямоугольных листов. Сочленение стержней и ярма обычно выполняют с взаимным перекрытием их листов внахлестку. Для этого листы в двух смежных слоях сердечника располагают, как показано на рис. 215, б, г, т. е. листы стержней 1, 3 и ярма 2, 4 каждого последующего слоя перекрывают стык в соответствующих листах предыдущего слоя, существенно уменьшая магнитное сопротивление в месте сочленения. Окончательную сборку магнитопровода осуществляют после установки катушек на стержни (рис. 215, в).
В трансформаторах малой мощности магнитопроводы собирают из штампованных листов П- и Ш-образной формы или из штампованных колец (рис. 216, а—в).
Большое распространение получили также магнитопроводы (рис. 216,г—ж), навитые из узкой ленты электротехнической стали (обычно из холоднокатаной стали) или из специальных железо-никелевых сплавов.
Обмотки. Первичную и вторичную обмотки для лучшей магнитной связи располагают как можно ближе друг к другу: на каждом стержне 1магнитопровода размещают либо обе обмотки 2 и 3
Рис. 215 Формы поперечного сечения (а) и последовательность сборки магнитопровода (б — г)
Рис. 216. Сердечники однофазных трансформаторов малой мощности, собранные из штампованных листов (о, б), колец (в) и стальной ленты (г—ж)
концентрически одну поверх другой (рис. 217,а), либо обмотки 2 и 3 выполняют в виде чередующихся дисковых секций — катушек (рис. 217,б). В первом случае обмотки называют концентрическими, во втором — чередующимися, или дисковыми. В силовых трансформаторах обычно применяют концентрические обмотки, причем ближе к стержням обычно располагают обмотку низшего напряжения, требующую меньшей изоляции относительно магнито-провода трансформатора, снаружи — обмотку высшего напряжения.
В трансформаторах броневого типа иногда применяют дисковые обмотки. По краям стержня устанавливают катушки, принадлежащие обмотке низшего напряжения. Отдельные катушки соединяют последовательно или параллельно. В трансформаторах э. п. с, у которых вторичная обмотка имеет ряд выводов для изменения напряжения, подаваемого к тяговым двигателям, на каждом стержне располагают по три концентрических обмотки (рис. 217, в). Ближе к стержню размещают нерегулируемую часть 4 вторичной обмотки, в середине — первичную обмотку 5 высшего напряжения и поверх нее — регулируемую часть 6 вторичной обмотки. Размещение регулируемой части этой обмотки снаружи упрощает выполнение выводов от отдельных ее витков.
В трансформаторах малой мощности используют многослойные обмотки из провода круглого сечения с эмалевой или хлопчатобумажной изоляцией, который наматывают на каркас из электрокартона; между слоями проводов прокладывают изоляцию из специальной бумаги или ткани, пропитанной лаком.
В мощных трансформаторах, устанавливаемых на э. п. с, тяговых подстанциях и пр., применяют непрерывные спиральные
Рис. 217. Расположение концентрических (а), дисковых (б) и концентрических трехслойных (в) обмоток трансформатора
(рис. 218, а) и винтовые параллельные (рис. 218,б) обмотки, обладающие высокой механической прочностью и надежностью. Непрерывную спиральную обмотку используют в качестве первичной (высшего напряжения) и регулируемой части вторичной обмотки (низшего напряжения). Эта обмотка состоит из ряда последовательно соединенных плоских катушек, имеющих одинаковые размеры. Катушки расположены друг над другом. Между ними устанавливают прокладки и рейки из электрокартона, которые образуют горизонтальные и вертикальные каналы для прохода охлаждающей жидкости (масла).
Для повышения электрической прочности при воздействии атмосферных напряжений две первые и две последние катушки первичной (высоковольтной) обмотки обычно выполняют с усиленной изоляцией. Усиление изоляции ухудшает охлаждение, поэтому площадь сечения проводов этих катушек берут большей, чем для остальных катушек первичной обмотки.
Винтовую параллельную обмотку используют в качестве нерегулируемой части вторичной обмотки. Ее витки наматывают по винтовой линии в осевом направлении подобно резьбе винта. Обмотку выполняют из нескольких параллельных проводов прямоугольного сечения, прилегающих друг к другу в радиальном направлении. Между отдельными витками и группами проводов располагают каналы для прохода охлаждающей жидкости.
Рис. 218. Непрерывная спиральная (а) и винтовая (б) обмотки мощных трансформаторов электрического подвижного состава: 1 — выводы; 2,6 — каналы для прохода охлаждающей жидкости; 3 — катушки; 4 — опорные кольца; 5 — рейки; 7 — бакелитовый цилиндр; 8 — проводники обмотки
Рис. 219. Устройство трансформаторов общего назначения (а) и тягового (б) с масляным охлаждением: 1— термометр; 2 — выводы обмотки высшего напряжения; 3—выводы обмотки низшего напряжения; 4, 6 — пробки для заливки масла; 5 — масломерное стекло; 7 — расширитель; 8 — сердечник; 9, 10 — обмотки высшего и низшего напряжений; 11 — пробка для спуска масла; 12 —бак для охлаждения масла; 13 — трубы для охлаждения масла; 14 — теплообменник; 15 — воздуховоды; 16, 18 — стойки для установки переключателя выводов трансформатора; 17 — заводской щиток; 19 — насос для циркуляции масла; 20 — опорные балки
Число параллельных проводов определяется током, проходящим по обмотке.
Система охлаждения. Способ охлаждения трансформатора зависит от его номинальной мощности. При увеличении мощности трансформатора необходимо увеличивать и интенсивность его охлаждения.
Трансформаторы малой мощности обычно выполняют с естественным воздушным охлаждением и называют «сухими». Отвод тепла в них происходит путем непосредственной теплоотдачи от нагретых поверхностей обмотки и магнитопровода к окружающему воздуху. В некоторых случаях трансформаторы малой мощности помещают в корпус, залитый термореактивными компаундами на основе эпоксидных смол или других подобных материалов.
В трансформаторах средней и большой мощности сердечник с обмотками целиком погружают в бак, наполненный тщательно очищенным минеральным (трансформаторным) маслом (рис. 219, а). Такой способ отвода тепла называют естественным масляным охлаждением. Трансформаторное масло обладает более высокой теплопроводностью, чем воздух, и хорошо отводит тепло от обмоток и сердечника трансформатора к стенкам бака, имеющего большую площадь охлаждения, чем сам трансформатор. Погружение трансформатора в бак с маслом обеспечивает также повышение электрической прочности изоляции его обмоток и предотвращает ее старение под влиянием атмосферных воздействий. Баки трансформаторов мощностью 20—30 кВ*А имеют гладкие стенки. В более мощных трансформаторах (например, в трансформаторах, устанавливаемых на тяговых подстанциях) для повышения теплоотдачи поверхность охлаждения увеличивают, применяя баки с ребристыми стенками или трубчатые. Нагревающееся внутри бака масло поднимается кверху, а охлаждающееся в трубах опускается вниз, создавая, таким образом, естественную циркуляцию, способствующую охлаждению трансформатора.
На э. п. с. переменного тока применяют трансформаторы с масляным охлаждением и принудительной циркуляцией масла через теплообменник, охлаждаемый воздухом (рис. 219,б). Такая система охлаждения позволяет существенно повысить индукцию в сердечнике и плотность тока в обмотках, т. е. уменьшить массу и габаритные размеры трансформатора.
В систему охлаждения обычно вводят струйное реле, которое не допускает включения трансформатора, если через него не циркулирует масло.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--