Реферат: Вейвлет-перетворення

Наступним кроком єзміщення віконної функції на деяку величину t сек. Функція із зміщенням знову множиться із сигналом, виконується ПФ результату множення. Ця процедура повторюється до досягнення кінця вихідного сигналу. Все вищесказане про ВПФ можна записати у такому вигляді:

,

де – вихідний сигнал, w() – віконна функція. Як видно з виразу, ВПФ є ні що інше, як ПФ сигналу, помноженого на віконну функцію. Отже, ми отримуємо істинне частотно-часове перетворення (ЧЧП) сигналу.

Розглянемо приклад. По-перше, оскільки наше перетворення є функцією як часу, так і частоти (на відміну від ПФ, що залежить тільки від частоти), то воно є двовимірним (а з урахуванням амплітуди, то й тривимірним). Нехай заданий нестаціонарний сигнал, наприклад, показаний на рис. 6. У цьому сигналі в різні моменти часу присутні різні частотні компоненти: від 0 дo 250мс – 300Гц, і, далі 200, 100 й 50Гц. Погляньте на ВПФ цього нестаціонарного сигналу на рис. 7:

Рисунок 6 – Заданий нестаціонарний сигнал

Рисунок 7 – ВПФ нестаціонарного сигналу

Це тривимірний графік. По осях «x» та «y» відкладені час і частота, відповідно. Розглянемоогинаючу частотно-часового подання. На графіку чітко виражені чотири піки, які відповідають чотирьом частотним компонентам. На відміну від ПФ, ці піки локалізовані в різних часових інтервалах. Отже, тепер ми маємо істинне частотно-часове подання сигналу. Ми не тільки знаємо, які частотні компоненти присутні в сигналі, але й у який момент часу вони зустрічаються.

Якщо ВПФ дає частотно-часове подання сигналу, то для чого ж нам вейвлет-перетворення? Властивий ВПФнедолік не видно з розглянутого прикладу.

Проблеми ВПФ мають свої корені у явищі, що називається принципом невизначеності Гейзенберга. Цей принцип свідчить, що неможливо одержати довільно точне частотно-часове подання сигналу, тобто не можна визначити для якогось моменту часу, які спектральні компоненти присутні в сигналі. Єдине, що ми можемо знати, так це часові інтервали, протягом яких у сигналі існують смуги частот. Ця проблема називається проблемою розрізнювання.

Проблема ВПФ пов'язана з шириною віконної функції, що використовується. Ця ширина називається носієм функції. Якщо вікно досить вузьке, то говорять про компактний носій. Як побачимо надалі, ця термінологія особливо широко використовується в теорії вейвлет-перетворень.

Часова інформація при ПФвідсутня. При ВПФ вікно має кінцеву довжину, накриває тільки частину сигналу, тому частотне розрізнювання погіршується. Отже, чим вужче вікно, тим краще часоверозрізнювання, але гірше частотне. І навпаки. Крім того, чим вужче вікно, тим більш справедливими стають наші припущення про стаціонарність сигналу в межах вікна.

Для того, щоб спостерігати ці ефекти, звернемося до прикладів. Розглянемочотири вікна різної ширини. Як віконну функціювикористовуватимемо функцію Гауса, що має вигляд:

,


де a визначає ширину вікна, а t – час. На рис. 8 показані чотири вікна різної ширини, обумовленої значенням a.

Розглянутий раніше приклад був розрахований при значенні a=0.001. Тепер розглянемо ВПФ тих самих сигналів при іншому значенні ширини вікна.

Рисунок 8 – Чотири вікна різної ширини

Рисунок 9 – ВПФ при вузькому значенні ширини вікна


Для початку використаємо перше, найвужче вікно. Ми можемо очікувати добре розрізнювання за часом, але погане за частотою (рис. 9). Зазначимо, що чотири піки, показані на рисунку, добре розділені за часом. Також зазначимо, що в частотній областікожен пік накриває діапазон частот, а не одну якусь частоту. Тепер збільшимо ширину вікна й подивимося на наступний рисунок 10.

Рисунок 10 – ВПФ при збільшеному широкому значенні ширини вікна

Як видно з рисунка, піки тепер не настільки добре розділені за часом.

Однак частотне розрізнювання покращилось. Збільшимо ще ширину вікна (рис. 11):

Рисунок 11 – ВПФ при широкому значенні ширини вікна


Як і очікувалося, часоверозрізнювання значно погіршилося.

К-во Просмотров: 289
Бесплатно скачать Реферат: Вейвлет-перетворення