Реферат: Вектори на площині і в просторі Дії з векторами
Мета. Узагальнення знань студентів про вектори на площині; формування поняття вектора в просторі.
1. Вектори. Основні поняття і означення.
2. Дії над векторами.
1. Вектор - це напрямлений відрізок або вектор - це паралельний перенос.
Вектори позначають:
|
Або за початком і кінцем
|
Якщо початок і кінець співпадають, вектор називають нульовим або О Два вектори називають рівними, якщо їх довжини рівні, а напрями співпадають
Вектори, які лежать на паралельних прямих, називають колінеарними.
|
(а якщо ця умова не виконується, то не колінеарними)
Вектори, які лежать в одній площині, називають компланарними (а якщо
ця умова не виконується, не компланарними).
- не компланарні
- компланарні
2. Додавання векторів Правило трикутника
Правило паралелограма
Сумою двох не колінеарних векторів, що виходять з однієї точки, є діагональ паралелограма, побудованого на цих векторах, яка виходить з цієї ж точки.
Правило паралелепіпеда
Сумою трьох не колінеарних векторів, що виходять з однієї точки, є діагональ паралелепіпеда, побудованого на цих векторах, яка виходить з цієї ж точки.
Властивості додавання
1) — комутативність
2) — асоціативність
3)
--> ЧИТАТЬ ПОЛНОСТЬЮ <--