Реферат: Ветрогенераторы

Диаметр ротора 3,2 метра

Материал лопастей FRP (композитный материал - фибергласс)

Тип ветрогенератора PMG (на постоянных магнитах)

Защита от ураганного ветра AutoFurl (автоматическая)

Высота мачты 9 метров

Контроллер заряда AIC (автоматический)

Рабочая температура от -40 до +60 C

Ветер раскручивает ротор. Выработанное электричество подаётся через контроллер на аккумуляторы. Инвертор преобразует напряжение на контактах аккумулятора в пригодное для использования


4. Ветрогенераторы и окружающая среда

Сегодня, когда экологические проблемы постепенно становятся одной из главных забот человечества, использование разных источников энергии рассматривается не только с точки зрения их мощности и экономичности, но и влияния на окружающую среду.

На первый взгляд ветровая энергия абсолютно чиста экологически и не наносит ущерба природе и людям. Но это не совсем так. Мощные ветровые электростанции с сотнями и тысячами ветровых турбин приносят немало проблем: они производят невообразимый шум, могут служить помехой для радио- и телетрансляций. Кроме того, огромные вышки нередко препятствуют миграции птиц. Разумеется, по сравнению с тем огромным ущербом природе, который наносят тепловые электростанции, вред от ветрогенераторов почти незаметен, однако если мы хотим в будущем иметь абсолютно "чистую" энергетику, проблемы влияния ветроустановок на окружающую среду надо решать уже сейчас. Одним из таких решений - и наиболее перспективным - является установка ветрогенераторов в открытом море, на большом удалении от берегов. Это повысит не только безопасность, но и экономичность, так как на просторах Мирового океана ветры дуют с особой силой. Разумеется, установка ветрогенераторов в открытом море требует больших затрат, однако экологическая чистота стоит денег, затраченных на нее.

Первая ветряная электростанция в открытом море уже действует. Это установка Эбельтофф в Дании. 16 ее турбин производят 55 кВт электроэнергии - вполне хватает для полного снабжения поселка из 600 домов. Специалисты подсчитали, что только Западная Европа, береговая линия которой протянулась более чем на 20000 километров, в состоянии получать около триллиона киловатт-часов электроэнергии в год, если воздвигнуть ветрогенераторы вблизи от побережья. А возможности нашей страны в этом плане еще выше.

На сегодняшний день технология строительства платформ для ветрогенераторов в открытом море отработана (большую роль здесь сыграл опыт строительства морских скважин для добычи нефти) и уже применяется.

Как уже опмечалось, главной проблемой применения ветровой энергии является непостоянство ветра. Имеется несколько способов аккумулировать энергию на случай безветренных дней. Простейший из них - создать систему двух резервуаров, один из которых залегает ниже другого. В ветреные дни производимое электричество можно использовать для закачки воды из нижнего резервуара в верхний. А когда ветрогенератор бездействует, достаточно открыть перемычку - и вода устремится из верхнего резервуара в нижний, вращая по пути турбину, которая будет давать электроэнергию. Еще один способ аккумулирования - использование ветровой энергии для электролиза воды - получения водорода и кислорода из воды. Водород - идеальное топливо, которое может заменить любой тип горючего. Теплота его сгорания втрое выше, чем у бензина. Если в ветреные дни создать достаточный запас водорода, его можно транспортировать в любое место по газопроводам, а затем использовать в топливных элементах.

Ученые подсчитали, что общий ветроэнергетический потенциал земли приблизительно в 30 раз превосходит годовое потребление электричества во всем мире. Разумеется, весь этот запас энергии использовать не удастся. Для нормальной работы ветроустановок скорость воздушных потоков не должна в среднем за год падать меньше 4-5 м/с, и в то же время не должна превышать 50 м/с. Впрочем, максимальная скорость ветра может быть и выше. Американские инженеры создали генератор с вертикальными роторами, которые вращаются наподобие карусели. По своей эффективности он превосходит лопастные генераторы почти втрое и способен выдерживать даже ураганные ветры. Видимо, с развитием технологии появятся и более совершенные конструкции. Скорее всего, технология не пойдет по пути повышения размеров ветроустановок. Будущее принадлежит ветрогенераторам мощностью от 5 до 100 киловатт, которые будут обеспечивать нужды сельского хозяйства и небольших поселений. Впрочем, имеется возможность применения и более мощных (до 5 мегаватт) установок, которые будут вырабатывать электроэнергию в составе уже существующих энергетических систем. Кроме того, ветровая энергия может быть использована для производство удобрений, для получения сжатого воздуха, который будет направляться в водоемы для их аэрации - повышения содержания кислорода, необходимого для его обитателей. Разные отросли промышленности все активнее делают заявки на ветровую энергию.

5. Проблемы эксплуатации промышленных ветрогенераторов

Промышленный ветрогенератор строится на подготовленной площадке за 7—10 дней. Получение разрешений регулирующих органов на строительство ветряной фермы может занимать год и более.

Для строительства необходимы дорога до строительной площадки, место для размещения узлов при монтаже, тяжёлая подъёмная техника с выносом стрелы более 50 метров, так как гондолы устанавливаются на высоте около 50 метров.

В ходе эксплуатации промышленных ветрогенераторов возникают различные проблемы:

Неправильное устройство фундамента. Если фундамент башни неправильно рассчитан, или неправильно устроен дренаж фундамента, башня от сильного порыва ветра может упасть.

Обледенение лопастей и других частей генератора. Обледенение способно увеличить массу лопастей и снизить эффективность работы ветрогенератора. Для эксплуатации в арктических областях части ветрогенератора должны быть изготовлены из специальных морозостойких материалов. Жидкости, используемые в генераторе, не должны замерзать. Может замёрзнуть оборудование, замеряющее скорость ветра. В этом случае эффективность ветрогенератора может серьёзно снизиться. Из-за обледенения приборы могут показывать низкую скорость ветра, и ротор останется неподвижным.

Удары молний. Удары молний могут привести к пожару. На современных ветрогенераторах устанавливаются молниеотводящие системы.

Отключение. При резких колебаниях скорости ветра срабатывает электрическая защита аппаратов входящих в состав системы, что снижает эффективность системы в целом. Так же для больших ветростанций большая вероятность срабатывания защиты на отходящих ЛЭП.

Нестабильность работы генератора. Из-за того что в большинстве промышленных ветрогенерирующих установках стоят асинхронные генераторы, стабильная работа их зависит от постоянства напряжения в ЛЭП.

Пожары. Пожар может возникнуть из-за трения вращающихся частей внутри гондолы, утечки масла из гидравлических систем, обрыва кабелей и т. д. Пожары ветрогенераторов редки, но их трудно тушить из-за отдалённости ветряных электростанций и большой высоты, на которой происходит пожар.

На современных ветрогенераторах устанавливаются системы пожаротушения.

6. Заключение

Итак, ветрогенераторы - это генераторы электрической энергии, предназначенные для превращения энергии ветра в электрическую. Сегодня ветрогенераторы – высокотехнологичное изделие мощностью от 5 КВт до 4 500 КВт единичной мощности. Ветрогенераторы современных конструкций позволяют использовать экономически эффективно энергию даже самых слабых ветров – от 4 метров в секунду. С помощью ветрогенераторов сегодня можно не только поставлять электроэнергию в «сеть» но и решать задачи электроснабжения локальных или островных объектов любой мощности.

К-во Просмотров: 972
Бесплатно скачать Реферат: Ветрогенераторы