Реферат: Використання фреймів та семантичних мереж для обробки природньої мови

Обробка природної мови - це формулювання та дослідження комп'ютерно-ефективних механізмів для забезпечення комунікації з ЕОМ на ПМ. Об'єктами досліджень є:

·власне природні мови;

·використання ПМ як для комунікації між людьми, так і для комунікації людини з ЕОМ.

Мета досліджень - створення комп'ютерних-ефективних моделей комунікації на ПМ. Саме така постановка задачі відрізняє NLP від задач традиційної лінгвістики та інших дисциплін, що вивчають ПМ, і дозволяє віднести її до областіШІ. Проблемою NLP займаються дві дисципліни: лінгвістика та когнітивна психологія.

Традиційно лінгвісти займалися створенням формальних, загальних, структурних моделей ПМ, і тому віддавали перевагу таким моделям, що дозволяли виявляти якнайбільше мовних закономірностей і робити узагальнення. Практично жодної уваги не приділялося придатності моделей з точки зору комп'ютерної ефективності їх застосування. Таким чином, виявилося, що лінгвістичні моделі, характеризуючи власне мову, не розглядали механізми його породження і розпізнавання. У цьому випадку, гарним прикладом постаєпороджуячаграматикаХомського, що виявилася абсолютно негожою на практиці у якості бази для комп'ютерного розпізнання ПМ.

Для когнітивної психології метою є не моделювання структури мови, а її використання. Спеціалісти цієї галузі також не приділяли великого значення проблемі комп'ютерної ефективності

Виділяютьзагальну і прикладну NLP. Метою.загальної NLP єрозробка моделей використання мови людиною, які б за цієї умови залишалися комп'ютерно-ефективними. Базовим для цього єзагальне розуміння текстів, як це визначається у роботах Чарняка, Шенка, Карбонелла та ін. Без сумніву, загальна NLP потребує величезних знань про реальний світ, і більша частина робіт зосереджена на представлені таких знань і їх застосування із метою розпізнаванні повідомлення, що надходить на ПМ. На сьогоднішній день, ШІ ще не досяг такого рівня розвитку, коли для вирішення подібних задач у великому обсязі використовувалися б знання про реальний світ, а відтоді існуючі системи можна називати лише експериментальними, оскільки вони працюють з обмеженою кількістю старанно відібраних шаблонів на ПМ.

Прикладна NLP займається звичайно не моделюванням, а безпосередньо можливістю комунікації людини з ЕОМ на ПМ. У цьому випадку вже не так важливо, як введений вираз буде зрозумілим з точки зору знань про реальний світ, а важливим є одержання інформації про те, чим і як може бути корисною для користувача ЕОМ (прикладом може бути інтерфейс експертних систем). Крім розуміння ПМ, у таких системах важлим є також розпізнання помилок та їх корекції.

Семантичні мережі.

Семантична мережа – це структура для уявлення знань у виді вузлів, сполучених дугами. Найперші семантичні мережі були розроблені в якості мови-посередника для систем машинного перекладу, а багато сучасних версій навіть зараз подібні по своїх характеристиках до природньої мови. Проте, останні версії семантичних мереж стали більш потужними і гнучкими та складають конкуренцію фреймовым системам, логічному програмуванню й іншиммовампредставлення.

Починаючи з кінця 50-ых років, на практиці були створені і застосовані десятки варіантів семантичних мереж. Незважаючи на те, що їх термінологія та структура відрізняються, проте існують збіжності, що притаманні практично всім семантичним мережам:

1. вузли семантичних мереж являють собою концепти предметів, подій, станів;

2. різноманітні вузли одного концепту відносяться до різних значень, якщо вони не пізначені як такі, що вони відносяться до одного концепту;

3. дуги семантичних мереж утворюють відношення між вузлами-концептами (позначки над дугами вказують на тип відношення);

4. деяківідношення між концептами являють собою лінгвістичні відмінки, такі, як: агент, об'єкт, реципієнт та інструмент (інші означають тимчасові, просторові, логічні відношення та відношення між окремими реченнями;

5. концепти організовані по рівнях у відповідності зі ступенем узагальненості. Наприклад, сутність, живаістота, тварина, хижак;

Проте, існують і відміності: розуміння значення з точки зору філософії; методи представленнякванторов спільності й існування та логічних операторів; засоби маніпулювання мережами та правила виводу, термінологія. Все це змінюється від автора до автора. Недивлячись не деякі відмінності, мережі зручно читаються та обробляються комп'ютером, а також є досить потужними для того, щоб уявити семантику природної мови.

Історична нотатка

Фрегуявив логічні формули у вигляді дерев, які, проте, слабо нагадують сучасні семантичні мережі. Ще одним піонером став ЧарльзСандерзПрис, що використовував графічні записи в органічній хімії. Він сформулював правила виводу із використанням екзістенційних графів.

У психології Сальтисон використовував графи для подання спадкоємності деяких характеристик у ієрархії концептів. Наукові дослідження Сальтисону мали величезний вплив на вивчення тактики шахів. Він, у свою чергу, вплинув на таких теоретиків, як Саймон і Ньюэлл.

Що стосується лінгвістики, то першимвченим, який займався розробкою графічних описів, став Теньер. Він використовував графічний запис для власної граматики залежностей. Теньер зробив величезний вплив на розвиток лінгвістики в Європі.

Вперше семантичні мережі були використані у системах машинного перекладу наприкінці 50-х - початку 60-х років. Перша така система, яку створила Мастерман, містила біля 100 примітивних концептів таких, як, наприклад, НАРОД, РІЧ, РОБИТИ, БУТИ. За допомогою цих концептів вона зробила опис словнику обсягом 15000 одиниць, у якому також існував механізм для переносу характеристик з гіпертипу на підтип. Деякі системи машинного перекладу базувалися на кореляційних мережахЦеккато, що являли собою набір із 56 різноманітних відношень, деякі з який - відмінкові відношення, відношення підтипу, часток, частини та цілого. Він використовував мережі, що складалися з концептів та відношень, для управління діями парсера та вирішення неоднозначностей.

У системах штучного інтелекту семантичні мережі використовуються для отримання відповедей на різноманітні запитання, вивчення процесів навчання, запам'ятовування та міркувань. Наприкінці 70-хмережі стали широко поширеними. У 80-х роках межа між мережами, фреймовыми структурами і лінійними формами запису поступово зникали. Сила виразності більше не є вирішальним аргументом на користь вибору мереж або лінійних форм запису, оскільки ідеї записані за допомогою однієї форми запису можуть бути легко переведені в іншу. І навпаки, особо важливе значення отримали другорядні чинники такі, як: читаність, ефективність, нештучність та теоретична елегантність. До уаги також береться легкість введення в комп'ютер, редагування та роздрук.

Реляційні графи.

Найпростіші мережі, які використовуються в системах штучного інтелекту – це реляційні графи. Вони складаються з вузлів, що сполучені дугами. Кожний вузол являє собою поняття, а кожна дуга - відношення між різноманітними поняттями. На малюнку 1 подане речення “Собака жадібно гризе кістку”. Чотири прямокутники подають поняття собаки, процесу гризіння, кістки і такої характеристики, як жадібність. Надписи над дугами означають, що собака є агентом грізіння, кістка є об'єктом гризіння, а жадібність - це манера гризіння.

Термінологія, що використовується в цій області різноманітна. Для того, щоб отримати деяку однорідність, вузли, сполучені дугами, слід називати графами, а структуру, де є ціле гніздо з вузлів або де існують відношення різноманітного порядку між графами, зветься мережею. Окрім термінології, що використовується для пояснення, також різняться засоби зображення. Інколи використовуються кружечки замість прямокутників; іноді пишуться типи відношень одразу понад дугами, не розміщуючи їх в овали; іноді використовуються абревіатури, наприклад О чи А для позначення агента або об'єкта; іноді використовуються різноманітні типи стрілок. На малюнку 2 зображений граф концептуальних залежностей Шенка. <=> означає агента. INGEST (поглинати) - один із примітивів Шенка: ЇСТИ - ПОГЛИНАТИ твердий об'єкт; ПИТИ - ПОГЛИНАТИ рідкий об'єкт; ДИХАТИ - ПОГЛИНАТИ газоподібний об'єкт. Додаткова скла зліва означає, що кістка передається із невказаного місця до собаки.

Оскільки досить складно ввести у комп'ютер деякі діаграми, то багато вчених записують свої графи у більш компактному вигляді. Наприклад, те саме речення Сова запропонував записати в лінійномувигляді із використанням деяких елементів із малюнка 1:

[ЇСТИ]-

(AGNT) -> [СОБАКА]

(OBJ) -> [КІСТКА]

К-во Просмотров: 194
Бесплатно скачать Реферат: Використання фреймів та семантичних мереж для обробки природньої мови