Реферат: Вітроенергетика і перспективи її розвитку в Україні

Держави світу, які сьогодні активно розвивають вітроенергетику, перейшли на потужності окремих генераторів від 1000 до 3 000 кВт, які мають коефіцієнт корисної дії близько 30% і більше. Натомість в Україні використовують генератори меншої потужності й менш ефективні. Розрахунки показують, що капіталовкладення на 1 кВт потужності за умови закупівлі імпортних машин – 1500 євро. Якщо налагодити їх виготовлення в Україні, то ця цифра зменшиться до 1100 євро. За таких умов середня собівартість виробленої електроенергії на вітроагрегатах буде коливатися від 1,7 до 2,0 цента, що є достатньою привабливою величиною. За терміну окупності 30 років електроенергію ВЕС можна продавати по 3 центи за кВт/годину. Проте, якщо термін окупності зменшити до 10 років, то ціну на електроенергію треба збільшити до 6 і більше центів, та й то у разі, коли кошти на будівництво вдасться залучити за нульовою річною ставкою. За 10% кредитів для окупності за 10 років тариф становитиме 7 центів за кВт/год і більше. До речі, в Німеччині новозбудовані вітроелектростанції продають електроенергію по 8,5 цента.

На думку голови спостережної ради ВАТ «Львівобленерго» Ярослава Шпака, вітроенергетику слід розвивати за розробленою програмою – будівництво ВЕС, які виробляються в Україні, незалежно, власної розробки чи ліцензійної, та освоєння нових типів розробок потужністю 1500, 2000 кВт. Паралельно з цим, за рахунок централізованого фонду розвитку електроенергетики (сьогодні спеціальний фонд Держбюджету) треба виділити суму до 10 млн євро на рік для фінансування (до 30%) разом з комерційними кредитами будівництва пілотних ВЕС потужністю до 5 МВт зі зразків імпортного обладнання потужністю 1500, 2500, 3000 кВт в різних зонах України для освоєння різних видів вітроустановок і оцінки ефективності їх роботи. Масове будівництво ВЕС в Україні, за словами Шпака, слід розпочинати з 2020 року.

Львівська область має добрі перспективи розвитку вітроенергетики. У гірській частині середньорічна швидкість вітру на висоті 10 м становить 5,5-6 м/с; технічно досяжний потенціал вітру на висоті 30 м – 620 кВт / год / кв. м, на висоті 100 м – 1150 кВт / год. / кв. м. Це підтверджує також робота збудованої 1997 року Трускавецької вітроелектростанції на горі Бухів (Східницька ВЕС) потужністю 750. Перспективними вважають також рівнинні території Яворівського, Мостиського та Золочівського районів (середньорічна швидкість вітру на висоті 10 м – 4,5 м / с). Перспективними планами використання відновлювальних та нетрадиційних джерел енергії на Львівщині до 2020 року передбачається будівництво вітрових електростанцій загальною потужністю 400 МВт.

Щодо територій, на яких будівництво ВЕС мало б найбільшу ефективність, то це райони Орівського гірського хребта (Сколівський район) – 25...30 МВт, села Рибник (Дрогобицький район) – 4 МВт, села Опака (Дрогобицький район) – 6 МВт, села Ісаї (Турківський район) – 14 МВт, села Явора (Турківський район) – 35 МВт, Оровий та Верхній Оровий хребти (Старосамбірський район) – 65 МВт, а також пагорби в Золочівському районі.

3. Енергія вітру

Енергія вітру вічно поновлювана й невичерпна, поки гріє Сонце. Вітер утворюється на землі в результаті нерівномірного нагрівання її поверхні Сонцем.

Повітря над водною поверхнею впродовж світлої частини доби залишається порівняно холодним, оскільки енергія сонячного випромінювання витрачається на випаровування води та поглинається нею. Над сушею повітря нагрівається завдяки тому, що вона поглинає сонячну енергію менше, ніж поверхня води. Нагріте повітря розширюється і піднімається вгору, а його заміняє холодне повітря від поверхні води. Вночі суша охолоджується швидше, ніж вода, і температура над водою буде вище, ніж над сушею. Тому вітри міняють свій напрямок, і холодне повітря суші витісняє нагріте повітря водної поверхні.

Аналогічно відбуваються зміни напрямку вітрів у гірській місцевості, де протягом дня тепле повітря піднімається вздовж схилів, а вночі холодне повітря спускається в долини.

Повітря циркулює й внаслідок обертання Землі: рух відбувається в напрямку, протилежному напрямку руху годинникової стрілки в північній півкулі, та за напрямком руху годинникової стрілки – в південній.

Вітер є незвичайним енергоносієм, невичерпним, але який має безліч складних і слабо передбачених фізичних параметрів для кожного окремо взятого географічного місця. У опис вітру, окрім середньорічної і максимальної швидкостей, слід взяти до уваги характеристики що враховують внутрішню структуру повітряного потоку такі як: «троянда вітрів», поривчасту, щільність повітря, турбулентність, температуру і різновекторні течії по висоті.

4. Вітроенергетичні установки (ВЕУ)

Вітроенергетична установка (ВЕУ, або вітряк) – технічна конструкція, поперетворює енергію рухомих повітряних мас в електричну. Під поняттям «вітрова електростанція» розуміють же систему з таких установок.

Конструкції вітроустановок


Є дві принципово різні конструкції вітроустановок: з горизонтальною і вертикальною віссю обертання.

Найбільшого поширення в світі набула конструкція вітрогенератора із трьома лопатями і горизонтальною віссю обертання (мал. 1), хоча подекуди ще зустрічаються і дволопастні. Були розроблені і впроваджені в електроенергетику вертикально-осьові (ортогональні) вітряки. Відмітна особливість таких вітростанцій – вертикальні вони здатні вловлювати вітер з будь-якого боку без врахування складності вітрового потоку, яких-небудь пристосувань до напрямку і типу вітру. Це дозволяє не враховувати при експлуатації станції «троянду вітрів» і інші параметри, а тільки енергетичний потенціал вітру. Вважається, що такі вітряки мають перевагу у вигляді дуже малої швидкості вітру, необхідної для пуску роботи вітрогенератора. Головна проблема таких генераторів - механізм гальмування. Через цю і деяких інших технічних проблем ортогональні вітрові електростанції не набули практичного поширення у вітроенергетиці.

У конструкції сучасних вітрових електростанцій закладені новітні наукові і експериментальні розробки використання кінетичної енергії вітру, що дозволили добитися високої ефективності, надійності експлуатації і низької вартості електроенергії, що виробляється.

Основними елементами вітроенергетичних установок є вітроприймальний пристрій (лопаті), редуктор передачі крутильного моменту до електрогенератора, електрогенератор і башта. Вітроприймальний пристрій разом з редуктором передачі крутильного моменту утворює вітродвигун. Завдяки спеціальній конфігурації вітроприймального пристрою в повітряному потоці виникають несиметричні сили, що створюють крутильний момент.

Залежно від потужності генератора вітроустановки поділяються на класи, їхні параметри та призначення наведено в таблиці 3.

Таблиця 3. Класифікація вітроустановок

Клас установки Потужність, кВт Діаметр колеса, м Кількість лопатей Призначення
малої потужності 15-50 3-10 3-2 Зарядження акумуляторів, насоси, побутові потреби
середньої потужності 100-600 25-44 3-2 Енергетика
великої потужності 1000-4000 >45 2 Енергетика

Оскільки вітер може змінювати свою силу та напрямок, вітрові установки обладнуються спеціальними пристроями контролю та безпеки. Ці пристрої складаються з механізмів розвертання вісі обертання за вітром, нахилу лопатей відносно землі за критичної швидкості вітру, системи автоматичного контролю потужності й аварійного відключення для установок великої потужності.

Вітродвигун виробляє енергію, коли вітер тисне на його лопаті. Чим довше лопать, тим більше енергії вітру вона може перехопити. Точно також, чим більша швидкість вітру, тим більше його тиск на лопаті і тим більша кількість перехопленої енергії.

Вихід енергії не перебуває в лінійній залежності від довжини лопаті і від швидкості вітру: він росте пропорційно квадрату довжини лопаті і кубу швидкості вітру.

Звернемо увагу на те, що при швидкості вітру 33 кілометри в годину видовження лопаті в 4 рази (з 15 до 60 м) збільшує вироблення енергії в 16 разів. Відмітимо також, що при довжині лопаті 30 м вітер із швидкістю 50 км/год забезпечує вироблення електроенергії в 26 разів більшу, ніж вітер із швидкістю 17 км/год. Саме тому інженери схиляються на користь великих вітродвигунів і прагнуть перехопити вітер на великій висоті.

Більшість великих вітродвигунів, що споруджуються зараз або що вже діють, розраховано на роботу при швидкостях вітру 17 – 58 кілометрів за годину. Вітер із швидкістю менший 17 кілометрів на годину дає мало корисній енергії, а при швидкостях більше 58 кілометрів на годину можливе пошкодження двигуна.

Вітродвигуни не слід розраховувати на перехоплення штормових вітрів. Навіть якщо такий вітер забезпечує отримання набагато більше енергії, чим слабкі вітри, він чинить настільки сильний тиск на лопаті, що весь вітродвигун може бути зруйнований. Крім того, тривалість часу, коли дмуть штормові вітри, настільки мала, що вклад штормових вітрів в сумарне вироблення енергії нікчемний, і це робить подібний ризик безглуздим. Щоб усунути проблему штормових вітрів, лопаті вітродвигунів згинають так, щоб вони були злегка повернені в один бік для зменшення натиску вітру; завдяки цьому удари сильних поривів не ушкоджують пропелер. Ця стара практика відома як «оперення». Щоб запобігти поломці лопатей, застосовують також нові матеріали, здатні протистояти великим навантаженням.

Інші проблеми в конструкції вітродвигунів обумовлені просто природою системи, необхідної для перехватки енергії вітру. Двигуни зазвичай встановлюють на високих вежах, щоб лопаті були відкриті сильнішим вітрам, що дмуть на великій висоті. Ближче до поверхні будинку, дерева, невеликі горби і тому подібне стримують і ослабляють вітер. Тому потрібні високі щогли. Проте важке устаткування – пропелер, коробка передач і генератор – повинно розміщуватися на верхівці щогли, і це вимагає міцної конструкції.

Ще одну проблему використання енергії від вітродвигуна створює природа самого вітру. Швидкість вітру варіює в широких межах – від легкого подиху до потужних поривів; у зв'язку з цим міняється і число обертів генератора в секунду. Для усунення цього змінний струм, що виробляється при обертанні осі, випрямляють, тобто перетворять в постійний, такий, що йде в одному напрямі. При великих розмірах вітродвигуна цей постійний струм поступає в електронний перетворювач, який проводить стабільний змінний струм, придатний для подачі в енергетичну систему. Невеликі вітродвигуни на зразок тих, що використовують на ізольованих фермах або на морських островах, подає випрямлений струм у великі акумуляторні батареї замість перетворювача. Вони абсолютно необхідні для запасання електроенергії на періоди, коли вітер дуже слабкий для вироблення якої-небудь енергії.

Важча проблема регулювання всієї системи електростанцій. Також як на приливних станцій, тут бувають періоди, коли генератори виробляють мало енергії або зовсім її не проводять. У такий час необхідно десь збільшити вироблення струму звичайною електростанцією, щоб покрити потребу в нім.

5. Побутові вітрові електростанції

Сучасні вітроенергетичні установки (вітряки) діляться на два класи: потужні, в сотні тисяч кіловат, називаються мережевими тому, що при безвітряній погоді забезпечення споживача енергією йде з мережі; і автономні, працюючі в парі з акумулятором. Як правило, потужність автономних вітряків не перевищує 5-10 кВт. Вони називаються: вітроелектричні установки малої потужності (ВЕУМП).

На цей унікальний клас вітряків звернув увагу німецький учений і практик Хайнц Шульц. Він і запровадив термін "Kleine Windkraftanlage", тобто "малі вітроенергетичні установки".

"Існує думка, - писав Х. Шульц, - що в областях із середньорічними швидкостями вітру менше 4 м/с використання енергії вітру невигідне. Проте це твердження не поширюється на малі вітросилові установки для зарядки акумуляторів і багатопелюсткові установки, що легко розганяються, для водопідйому. Заселення американських і австралійських внутрішніх територій, де більшість областей мають середньорічні швидкості вітру менше 2 м/с, було б без них неможливо".

К-во Просмотров: 226
Бесплатно скачать Реферат: Вітроенергетика і перспективи її розвитку в Україні