Реферат: Визуальные методы оценки цикличности в ходе метеоэлементов

Таким образом, региональное проявление глобального потепления заметно сказывается на структуре временных рядов температуры.

Было показано, что территориальное распределение средней месячной температуры и среднеквадратических отклонений (СКО) особенно в холодный период (1958-1977) определяется в первую очередь географическими особенностями района – наличием холодных поверхностей Арктики и Гренландии, теплых – Атлантики, юга Европы и Средиземноморья. Береговая линия способствует формированию контрастов в температурных полях. Северные районы отличаются повышенными значениями СКО, достигающими 7, 5°С. Процесс неоднороден и по вертикали: если вблизи земной поверхности имеет место рост температуры, то в верхней тропосфере и нижней стратосфере, наоборот, падение.

ВИЗУАЛЬНЫЕ МЕТОДЫ ОЦЕНКИ ЦИКЛИЧНОСТИ В ХОДЕ МЕТЕОЭЛЕМЕНТОВ

Метод скользящих n-летних средних кривых

Метод крайне субъективен и результаты сглаживания очень подвержены влиянию длины периода сглаживания. С одной стороны при небольших периодах не удается выявить трендовую компоненту сильно зашумленного процесса, при больших же периодах происходят значительные потери данных на концах анализируемого интервала.

Скользящее среднее порядка L - это временной ряд, состоящий из средних арифметических L соседних значений Yi, по всем возможным значениям времени. В качестве L выбирается нечетное число, обычно 3, 5 или 7, и эти схемы называют трехточечной, пятиточечной и т.д. Для примера рассмотрим трехточечную схему и обобщим ее на другие случаи.

Среднее рассчитывается по трем значениям Yi, одно из которых относится к прошлому периоду, одно – к искомому и одно – к будущему. Так как для i=1 не существует прошлого значения, то в первой точке невозможно рассчитать сглаженное значение. Для i=2 сглаженное значение будет средним арифметическим Yiпри i=1, 2, 3; для i=3 среднее арифметическое берется для 2-го, 3-го и 4-го значений Yi; в последней точке исходного интервала скользящее среднее также невозможно рассчитать из-за отсутствия будущего значения по отношению к рассчитываемому.

Способ скользящих n-летних средних кривых (например, 3-, 5- и 15-летних) был впервые предложен в 1896 г. П. Шрайбером и им же использован для оценки колебаний некоторых элементов климата. Этот способ получил очень широкое распространение применительно к анализу многолетнего хода и ценки циклических колебаний различных природных элементов. Между тем в отношении его использования существуют различные мнения.

Е.С. Рубинштейн отметила, что метод скользящих средних позволяет полностью или частично погасить волны сравнительно коротких колебаний и выявить колебания длительностью большей, чем период осреднения.

В.Г. Андреянов показал, что скользящие n-летние средние значения чисел Вольфа дают смещение циклических фаз во времени относительно реальных их границ на величину, зависящую от принятого периода осреднения

А.Я. Безрукова, используя для оценки вековых колебаний солнечной активности скользящую кривую 10-летних сумм среднегодовых чисел Вольфа, полагала, что такое осреднение практически исключает 11-летнюю цикличность. В результате для векового цикла XIXстолетия она получила сложный и неопределенный минимум цикла, эпоху которого трудно установить.

Скользящие средние кривые действительно являются ограничительным средством при проведении указанного анализа. Эти кривые не только смещают реальные фазы в циклическом процессе, но и искажают характер его структуры. Осредненные же на этой основе данные природных элементов снижают результаты исследований при установлении взаимозависимостей.

В максимальных и минимальных среднегодовых значениях температуры воздуха, равно как и для границ и фаз внутривековых циклов, наблюдается сдвиг, как правило, в сторону запаздывания. Величина этого сдвига определяется в зависимости от разнообразия характера крутизны роста и спада во внутривековых циклах, их продолжительности и амплитуды колебаний и тем больше, чем скользящая n-летняя длиннее оптимальной общей продолжительности этих циклов, и наоборот. Для большого сдвига границ характерна слабая выраженность циклов, для малого – интенсивность развития процесса. Однако с уменьшением периода осреднения сдвиг в границах и фазах уменьшается и, наоборот, с увеличением периода осреднения он увеличивается. По этой причине полученный способом скользящих средних кривых характер внутривековой изменчивости того или иного исследуемого элемента не отражает реальной природной картины, а лишь затушевывает ее.

Вот почему П.С. Костин для центральной части Русской равнины в скользящих 5-летних средних кривых прироста колец деревьев нашел 6 – 16-летние внутривековые циклы, а в их 15-летних средних – 30- и 60-летние циклы. Заметим, что 60-летний цикл в природных явлениях не установлен.

Применение способа скользящей средней кривой для анализа внутривековой цикличности вызывает большую условность в тех случаях, когда наблюдается вековая изменчивость в элементах.

Но нельзя полностью отрицать применение способа скользящей n-средней. В особо сложных явлениях, например в циклических колебаниях годовых колец прироста деревьев, этот способ может быть успешно использован. Здесь этот способ позволяет исключить влияние таких явлений, как вековой ход метеоэлементов и разность прироста колец в зависимости от возраста деревьев. Но в этом случае с помощью его можно решить задачу в основном по выделению лишь внутривековых циклов. При этом следует пользоваться не скользящей средней кривой, а значениями отклонений от этой кривой.

Способ скользящего n-летнего осреднения также применятся при установлении связи между исследуемыми элементами, в особенности когда им свойственна большая амплитуда колебаний на фоне главного циклического процесса. [1]

Метод разностной интегральной кривой

Способ разностной интегральной кривой прямой для оценки циклических колебаний многих явлений природы впервые был предложен В.Г. Глушковым. В.Г. Андреянов впервые начал производить сопоставительный анализ разнородного материала на основе нормирования разностных интегральных кривых модульных коэффициентов.

Положительные значения отклонений модульных коэффициентов при суммировании за интервал времени дают наклон разностной интегральной кривой вверх относительно горизонтальной линии, а отрицательные их значения – наклон кривой вниз.

Оценивая циклические колебания исследуемых элементов на основе разностной интегральной кривой, следует отметить, что в ней не учитывается циклический процесс в нашем понимании. Наиболее характерные отрезки кривой в таком процессе соответствуют областям впадин и вершин или наименьшим и наибольшим их значениям. На разностной же интегральной кривой эти положения в циклах, за счет суммирования ординат в повышенных и пониженных фазах, смещаются. По этой причине смещаются и природные границы, которые в полных циклах принимаются по наименьшим значениям впадин. Величина смещения границ зависит от характера структуры циклической изменчивости изучаемого элемента.

Поскольку циклический процесс принципиально различен для разных взаимосвязанных природных элементов (даже для таких как атмосферные осадки и речной сток), вследствие воздействия подстилающей поверхности, то величина смещения фаз по результатам разностной интегральной кривой в этом процессе получается несравнимой. Более того, в условиях векового хода природного процесса разностная интегральная кривая приводит к неточности в определении повышенных и пониженных фаз внутривековых циклов, занижает или завышает их значения, либо вовсе их не учитывает. Так как среднее значение векового цикла того или иного изучаемого элемента отличается по знаку от средних значений внутривековых его циклов, то например, на восходящей ветви этого цикла, в начале ее развития, повышенные фазы внутривековых циклов будут либо менее мощные, либо совершенно утрачены, чем в конце ее, и обратно, для пониженных фаз этих циклов. Очевидно, что на нисходящей ветви векового цикла повышенные и пониженные фазы циклов будут иметь обратную последовательность.

В случае сверхвекового хода отмеченные неточности будут усугубляться в зависимости величины изменчивости элемента. Таким образом, вычисление ординат от середины и построение по ним разностной интегральной кривой не отражает действительных условий полного циклического процесса.[1]

ЗАКЛЮЧЕНИЕ

Основные результаты данной работы заключатся в следующем:

1. Описаны факторы, формирующие климат и его изменения.

2. Произведен анализ некоторых научных работ, посвященных проблеме изменения климатического режима.

3. Кратко охарактеризованы визуальные методы оценки цикличности в ходе метеоэлементов, выявлены их положительные и отрицательные стороны.

4. Показана важность, значимость данного направления в метеорологии.

Полученные результаты не являются окончательным, с течением времени они могут дополняться, изменяться, корректироваться. В дальнейшем имеет смысл провести более детальное изучение данного вопроса, целесообразно будет включить мнения других авторов научных трудов, посвященных проблемам климатических изменений.

Список литературы

1. Афанасьев А.Н. Колебания гидрометеорологического режима на территории СССР. М.: Наука, 1967. 423 с.

2. Верещагин М. А., Переведенцев Ю.П.,. Шанталинский К.М, Тудрий В.Д., Батршина С.Ф., Лысая А.И. О некоторых результатах изучения векового хода и межгодовой изменчивости глобального термического режима во второй половине XIX-го и в XX-м столетии // Метеорология на рубеже веков: итоги и перспективы развития. Тез. докл. Всеросс. науч. конф. Пермь, 2000. С. 33-34.

3. Дроздов О.А. Арапов П.П., Лугина К.М., Мосолова Г.И. Об особенностях климата при потеплениях последних столетий // Тез. докл. Всеросс. науч. конф. Казань, 2000. С. 24-26.

К-во Просмотров: 164
Бесплатно скачать Реферат: Визуальные методы оценки цикличности в ходе метеоэлементов