Реферат: Влияние температуры и коррозионно-активной среды на свойства металлов под напряжением при статических и циклических нагружениях

12

10


12 8

10(5) 10(6) 10(7) N 10(5) 10(6) 10(7) N

Рис. 6 . Кривые коррозионной усталости стали 30ХГСНА (а) и алюминиевого сплава Д1 (б) .

- испытания на воздухе ;

- испытания в водопроводной воде (полное погружение) ;

На кривой коррозионной усталости металлов отсутствует горизонтальный участок , и даже при очень большом числе циклов она остаётся наклонной к оси абсцисс , при этом угол наклона с увеличением базы может уменьшаться (рис. 7) .

Предел коррозионной усталости в значительной степени зависит от частоты нагружений , причём эта зависимость обнаруживается в области частот до 50 Гц . Это связанно с тем , что для большинства материалов время нахождения под воздействием среды вносит существенную поправку в получаемые результаты . Поэтому увеличение частоты нагружений с десятков циклов в минуту до десятков тысяч циклов в минуту вызывает повышение характеристик коррозионной усталости .

Сопоставляя влияние концентрации напряжений при испытании на воздухе и в коррозионной среде , можно отметить , что при испытаниях на коррозионную усталость действие концентраторов напряжений ослабляется . С повышением длительности испытаний ( понижением уровня напряжений ) увеличивается роль коррозионного фактора , определяющего снижение предела коррозионной усталости образца с надрезом и сглаживается влияние остроты надреза .

Для нержавеющих сталей , склонных к щелевой коррозии , наличие острых концентраторов при коррозионной усталости оказывается значительно более опасным , чем в условиях обычной усталости .

Проявление масштабного фактора в условиях коррозионной среды отличается от наблюдаемого на воздухе . когда с увеличением диаметра образца предел выносливости металла уменьшается . С увеличением диаметра образца предел его коррозионной усталости увеличивается . Для стали . например , изменение диаметра образца с 5 до 40 мм , приводит к повышению предела коррозионной усталости на 46% . При наличии концентрации напряжений проявление масштабного эффекта усиливается .

Состав среды является одним из основных факторов , определяющих снижение циклической прочности металла . Однако для разных материалов наиболее опасным оказываются различные среды .

В условиях циклических нагружений атмосфера не является инертной средой . Влияние атмосферы зависит от количества находящейся в ней влаги . Так , повышение относительной влажности с 58 до 100% снижает предел коррозионной усталости сталей на 4 - 5 кг/мм(2) .

Предел коррозионной усталости алюминиевого сплава Д16-Т при полном погружении в раствор хлористого натрия составляет 5 кг/мм(2) , а при подаче каплями- 9 кг/мм(2) . Это объясняется тем , что пассивирующий эффект кислорода воздуха в большей степени проявляется при коррозионной усталости металлов , образующих с ним окисные или гидроокисные защитные плёнки . поэтому выносливость алюминиевого сплава возрастает с увеличением аэрации , чего не наблюдается у сталей .

В подавляющем большинстве исследований коррозионно-усталостная прочность металлов определялась в 3%-ном растворе NaCl , значительно снижающем усталостную прочность сталей и алюминиевых сплавов . Прочность металла в конструкциях , эксплуатирующихся в слабоагрессивных средах , значительно выше .

s-1 , кг/мм(2) Рис. 5

Конструкционные стали ,

нержавеющие стали

70

Воздух

60


50


Нержавеющие стали

40


Конструкционные стали

30

К-во Просмотров: 468
Бесплатно скачать Реферат: Влияние температуры и коррозионно-активной среды на свойства металлов под напряжением при статических и циклических нагружениях