Реферат: Влияние видимого света на организм человека
Лазерное излучение представляет для органа зрения значительно большую опасность, чем все известные источники некогерентного света, так как оно способно вызвать его повреждение за значительно более короткий промежуток времени, чем тот, который необходим для срабатывания физиологических защитных механизмов.
Уже вскоре после появления лазеров были опубликованы сообщения о случайных повреждениях глаз их излучениями. Анализ этих сообщений показал, что повреждения имели место с равной частотой от воздействия как прямого, так и отраженного от различных поверхностей пучка света.
Лазерное излучение пропускается оболочками глазного яблока и поглощается ими по тем же законам, что и некогерентное и не вызывает в тканях каких-либо специфических эффектов. Как и некогерентное излучение, в зависимости от длины волны оно может быть причиной возникновения различных видов повреждения глаз. Так, в частности, видимая область оптического спектра может вызывать фотохимическое повреждение сетчатки голубым светом, термический ожог сетчатки и собственно сосудистой оболочки и термический ожог радужки.
Для оценки степени опасности для глаз излучения того или иного лазера необходимо знать минимальную мощность или энергию излучения, достаточную для появления порогового повреждения. За пороговое принимают минимальное повреждение оболочек глаза, которое может быть зарегистрировано визуально непосредственно после воздействия или спустя некоторое время после него (как правило, не более суток).
3.3. Механизмы световых повреждений глаз
Механизм действия светового излучения на орган зрения может быть различным в зависимости от длины волны, мощности и длительности воздействия. Эти параметры являются определяющими как для некогерентных, так и для лазерных излучений.
Поскольку органические молекулы, из которых состоит любая ткань, имеют широкий спектр абсорбируемых частот, то нет оснований считать, что монохроматичность лазерного излучения может создать какие-либо специфические эффекты при взаимодействии с тканью. Экспериментально таких эффектов найти не удалось. Пространственная когерентность также не меняет существенно механизма повреждений световым излучением, так как явление теплопроводности в тканях и присущие глазу постоянные мелкие движения разрушают интерференционную картину уже при длительности воздействия, превышающей несколько микросекунд.
Различают три основные группы механизмов повреждающего действия света на орган зрения. Рассмотрим каждую из них отдельно.
3.3.1. Термический механизм
Термический механизм повреждения органа зрения световым излучением является наиболее универсальным для видимой части спектра при длительности воздействия от 1 мс до 10 с. Значительная часть энергии излучения этого диапазона, поглощаясь оболочками глаза, превращается в тепло и нагревает ткань. При достаточно высокой плотности мощности излучения выделяющееся в очаге облучения тепло вызывает коагуляцию белков и других органических материалов, что клинически выявляется в виде ожога ткани.
Коагуляция наступает при температуре +58о С и по мере дальнейшего повышения температуры тяжесть ожога и его площадь нарастают. При достижении температуры +100о С происходят вскипание содержащейся в ткани воды и парообразования в очаге ожога. Линейная зависимость между плотностью мощности и тяжестью ожога при этом нарушается, так как расширение пара приводит к взрывному повреждению ткани (1).
Термический механизм повреждения в живой ткани реализуется по более сложным законам, чем в неживом однородном объекте. Это особенно касается ожогов органа зрения в связи со значительным различием абсорбционных характеристик его оболочек и их структурных элементов.
Значительное влияние на течение термических процессов в живой ткани оказывает наличие циркуляции крови, которая изменяет теплопроводность ткани и способствует более быстрому отведению тепла из очага облучения, а также ответная воспалительная реакция организма и другие факторы.
3.3.2. Фотомеханические повреждения
В случае, когда в очаге светового воздействия достигается температура кипения воды, происходит механический взрыв ткани расширяющимися парогазовым пузырем. Такие разрывы сетчатки, происходящие за счет превращения части поглощенного света в механическую энергию давления, нередко имеют место при массивной коагуляции внутриглазных опухолей полихроматическим излучением ксенонового фотокоагулятора. Как правило, такие разрывы сопровождаются выраженным звуковым эффектом.
Вскоре после появления лазеров, обеспечивших получение мощных импульсов света малой длительности, стало ясно, что роль механического фактора в механизме повреждающего действия света возрастает не только по мере роста мощности, но и по мере сокращения длительности воздействия до 1 мс и менее.
Преобладание нетермических способов передачи энергии облучения ткани при резком сокращении длительности импульса дало основание считать вызываемые импульсными лазерами биологические эффекты специфически лазерными.
При воздействии на глазное дно излучений импульсных лазеров в режиме модулированной добротности, у которых длительность импульса составляет несколько десятков наносекунд, повреждения механической природы выступают на первый план. Около 40% энергии лазеров, работающих в режиме модулированной добротности, расходуется на механическое разрушение ткани. Это дало основание назвать такие лазеры “холодными” и использовать их для механического разрушения некоторых внутриглазных тканей в лечебных целях. Их излучение ионизирует ткань, создавая электрическое поле высокой напряженности. Возникают электрический пробой и акустическая волна, механически разрушающие ткань.
Разрыв ткани происходит независимо от степени ее пигментации или химической природы. При этом образуется короткоживущий плазменный экран, защищающий соседние ткани, например сетчатку при работе на переднем сегменте глаза, от прямого поражения.
Гидродинамический удар, возникающий в замкнутой полости глаза при воздействии импульсных лазеров, является причиной существенного повышения внутриглазного давления, а также возникновения дистантных изменений в сетчатке и сосудистой оболочке, выявляемых тонкими морфологическими и функциональными методами.
Третий механизм повреждения наиболее интересен, но вместе с тем для его понимания необходимо уяснить несколько важных моментов, без которых он будет не совсем ясен. Речь идет о фотохимическом механизме повреждения, основанном на фотосенсибилизированном свободнорадикальном окислении клеточных структур сетчатки, которое происходит в результате образования синглетного кислорода.
3.4. Физическая природа синглетного кислорода.
Известно, что основное состояние молекул кислорода является триплетным, однако при поглощении энергии молекулы кислорода способны заселять относительно низколежащие синглетные уровни 1 åg + и 1 Dg . Для заселения 1 åg необходима энергия, соответствующая фотонам с длиной волны 760 нм, для заселения 1 Dg - энергия фотонов с длиной волны 1270 нм. Синглетным кислородом (1 О2 ) называют электронно-возбужденные молекулы О2 , находящиеся на одном из указанных синглетных уровней. Таким образом 1 О2 отличается от других активных форм кислорода (радикалы . О2 - , НО2 . , ОН. или перекись водорода Н2 О2 ) тем, что для его получения требуется лишь поглощение энергии без химической модификации кислородных молекул.
Исследования многих лабораторий позволили получить информацию, свидетельствующую о возможности участия 1 Dg - состояния О2 в процессах фотодинамического повреждения клеток, фототаксиса и фототропизма, биохемилюминисценции, фагоцитоза, пероксидазных реакциях, а также в фототерапевтических эффектах при лечении рака, желтухи новорожденных, кожных болезней и в других процессах. Таким образом, анализ активации кислорода путем заселения его возбужденных состояний в настоящее время находится в центре внимания исследователей биологической активации кислорода и ряда прикладных медико-биологических проблем.
Многочисленные исследования позволили выявить ряд элементарных физических и химических процессов, которые могут служить источником 1 О2 , но подробно останавливаться мы на них не будем. Следует только отметить, что для образования синглетного кислорода необходимо наличие молекул фотосенсибилизатора, при помощи которых происходит передача энергии фотонов молекулам кислорода. Эффективными фотосенсибилизаторами образования 1 О2 являются основные пигменты фотосинтеза: хлорофиллы, бактериохлорофиллы и феофитины, их предшественники в биосинтезе - протохлорофиллы и порфирины; основной пигмент зрения - ретиналь; флавины, а также использующиеся в фототерапии рака водорастворимые порфирины. Слабыми генераторами 1 О2 оказались псоралены, применяющиеся в практике фототерапии кожных заболеваний, эндогенный сенсибилизатор хрусталика - кинуренин, антибиотик - тетрациклин (2).
Анализ экспериментальных данных позволяет заключить, что процесс образования 1 О2 характерен для клеток любых организмов в аэробных условиях. Основными генераторами 1 О2 в клетках являются триплетные молекулы сенсибилизаторов, радикалы . О2 - и НО2 . или перекись водорода. Основными тушителями 1 О2 в нефотосинтезирующих клетках - молекулы белков. В хлоропластах и хроматофорах ту же роль выполняют каротиноиды и хлорофиллами. Нефотосинтезирующие клетки, не располагающие указанными пигментами, не имеют специальных систем защиты от 1 О2 . Низкая стационарная концентрация синглетного кислорода в таких клетках обеспечивается, низкой эффективностью образования в них триплетных молекул сенсибилизаторов, радикалов . О2 - , НО2 . и перекиси водорода. Существенная роль в снижении выхода 1 О2 в клетках, принадлежит антиокислительной системе, включающей пероксидазу, супероксиддисмутазу, каталазу и ингибиторы свободных радикалов. Эта система, обеспечивает также защиту клеток от радикалов, образующихся после окисления биомембран синглетным кислородом. Можно полагать, что в обычных условиях указанные антиокислительные системы в сочетании с системами биохимического синтеза создают необходимый уровень репарации поврежденных компонентов и делают естественный фон образования 1 О2 безвредным для клеток.
Однако в экстремальных условиях или при патологических изменениях, приводящих к резкому увеличению содержания пигментов-сенсибилизаторов, или при введении экзогенных сенсибилизаторов в клетки интенсивность фотогенерации 1 О2 может дойти до критического уровня, вызывающего необратимые деструктивные эффекты (2).
3.5. Фотосенсибилизированные повреждения
биологических мембран
Первичным процессом фотобиологических реакций является поглощение света молекулами вещества. В большинстве случаев эти молекулы представляют собой биологический субстрат, который сам претерпевает дальнейшие фотохимические изменения. В некоторых случаях в качестве первичных акцепторов световой энергии выступают вещества, которые передают эту энергию на другие молекулы, а сами при этом обычно не претерпевают химических превращений. Такие вещества называются фотосенсибилизаторами, а процессы, в которых они участвуют, - фотосенсибилизированными. В качестве сенсибилизатора в клетках могут выступать как естественные метаболиты - хлорофилл, флавины, порфирины, билирубины (эндогенные сенсибилизаторы), так и широкий круг попадающих в клетки экзогенных веществ - акцепторов видимого света (красители, ароматические углеводы). Частным случаем фотосенсибилизированных процессов является фотоповреждение биологических систем в присутствии сенсибилизаторов с участием молекулярного кислорода - так называемое фотобиологическое действие.
По своему механизму все фотосенсибилизируемые реакции разделяют на два типа в зависимости от того, каким способом энергия светового возбуждения передается от сенсибилизатора к биологическому субстрату. В реакциях типа I сенсибилизатор в возбужденном триплетном состоянии участвует в переносе электрона или атома водорода, в результате чего получаются реакционноспособные радикалы биологического субстрата, вступающие в дальнейшие химические реакции с кислородом или с другими молекулами. В реакциях типа II происходит перенос энергии от сенсибилизатора к молекуле кислорода с переводом ее в электронно-возбужденное синглетное состояние 1 О2 ; образовавшийся синглетный кислород затем окисляет биологический субстрат. Тип фотосенсибилизируемой реакции зависит в первую очередь от природы сенсибилизатора и субстрата, в частности от их способности вступать в окислительно-восстановительные реакции.
Действие света в присутствии сенсибилизаторов направлено на те компоненты клетки, в которых сенсибилизатор локализуется. За исключением небольшого ряда веществ, которые хорошо проникают в ядро клетки и сенсибилизируют фотоповреждение наследственного аппарата, большинство сенсибилизаторов преимущественно взаимодействует с мембранными системами клетки и обуславливает их фотоповреждение, что приводит к нарушению гомеостаза клетки, ее энергообеспечения и других мембраносвязанных функций.
Биологические мембраны являются главной мишенью повреждающего действия света в присутствии, по крайней мере, порфириновых сенсибилизаторов. Следовательно, для того чтобы ответить на вопрос, каковы механизмы сенсибилизированного повреждения клеток, в первую очередь нужно рассмотреть фотоповреждения мембран. К сожалению, на изолированных мембранах выполнены лишь единичные работы, причем все исследования проведены на эритроцитарной мембране. Однако как было показано, эта мембрана является удобной и адекватной моделью биологических мембран вообще, поэтому можно думать, что закономерности, установленные на ней, будут справедливы и для других мембран.
Поскольку главными компонентами биологических мембран являются липиды и белки, характер фотосенсибилизируемых процессов в мембране определяется в значительной мере чувствительностью белков и липидов к сенсибилизированным фотоповреждениям.
В липидах большую чувствительность к сенсибилизированному фотоокислению проявляют ненасыщенные жирные кислоты, насыщенные же жирнокислотные цепи практически не подвергаются фотоокислению. Легко фотоокисляется также другой вид липидов - холестерин. Процессы фотоокисления ненасыщенных жирных кислот фосфолипидов, а также холестерина сходны с процессами, протекающими при перекисном окислении липидов.