Реферат: Водно-электролитный баланс, кислотно-щелочное состояние организма
Несколько слов следует сказать о природе физиологических регуляций, обеспечивающих различные стороны водно-солевого гомеостаза. Величина осмоляльности сыворотки крови зависит от следующих элементов осморегулирующего рефлекса. Осмотическое давление крови и внеклеточной жидкости воспринимается осморецепторами, иные сенсоры воспринимают концентрацию во внеклеточной жидкости некоторых ионов. В ответ на увеличение осмоляльности растет поступление в кровь антидиуретического гормона (аргинин вазопрессин). При увеличении концентрации ионов кальция в плазме крови возрастает поступление в кровь паратгормона, а при снижении (гипокальциемии) - тирокальцитонина, т.е. эндокринная система стремится минимизировать изменения ионного состава крови и способствует восстановлению нормальных показателей. При снижении в организме объема внеклеточной жидкости и плазмы крови увеличивается секреция альдестерона, вазопрессина, а при увеличении объема внеклеточной жидкости усиливается поступление в кровь натрийуретических гормонов - атриопептида из предсердия, оубаинподобного фактора из мозга. Обычно регуляция каждого из параметров внутренней среды обеспечивается не менее чем двумя факторами, один из которых способствует сохранению вещества в организме, а другой - его выделению. Казалось, что иная картина наблюдается только в случае осморегуляции, т.е. при регуляции водного баланса - в зависимости от уровня осмоляльности крови секретируется разное количество вазопрессина. Этот гормон быстро разрушается, и полагали, что именно соотношение секреции и инактивации вазопрессина определяет скорость экскреции воды почкой. Однако оказалось, что и в этом случае имеется парный физиологически активный фактор, от секреции которого зависит восстановление водонепроницаемости стенки почечных канальцев и скорость выделения осмотически свободной воды почкой. Таким фактором, противодействующим вазопрессину, являются локально синтезируемые вещества, выделяемые во внеклеточную жидкость. Они названы аутакоидами, действуют аутокринно или паракринно. Эти результаты новых исследований физиологов имеют важное клиническое значение по двум причинам. Во-первых, от скорости секреции этих веществ зависит сила ответа на инъецируемый вазопрессин или иные физиологически активные вещества, применяемые в острых ситуациях. Во-вторых, возможны патологические состояния, обусловленные избыточным или недостаточным выделением этих веществ. Такие патологические состояния выявлены, одним из них является ночной энурез, другим проявлением служит развитие полиурии при одной из стадий ХПН.
Показатели кислотно-основного состояния крови
РН | Капилл, кровь | |
венозная кровь | 7,32-7,42 | |
Напряжение углекислого газа в крови (рСО2 ) | ||
Капилл кровь | муж. | 32-45 мм. рт. ст. |
жен. | 35-48 мм. рт. ст. | |
Венозная кровь | 42-55 мм. рт. ст. | |
Напряжение кислорода в крови (рО2 ) | ||
Капилл кровь | 83-108 мм. рт. ст. | |
Венозная кровь | 37-42 мм. рт. ст. | |
Кислород, % насыщения | 95-98 % | |
Бикарбонат плазмы крови стандартный (АВ, ВS) | ||
Капилл кровь | 18-23 ммоль/л | |
Венозная кровь | 22-29 ммоль/л | |
Буферные основания (В. В.) | 43,7-53,6 ммоль/л | |
Избыток оснований (В. Е.) | 0±2,3 ммоль/л | |
Общая углекислота (Н2 СО3 ) | 22,2-27,9 ммоль/л |
Водно-солевой и минеральный обмен, тяжелые металлы, токсические вещества
Натрий | |
Плазма | 135-152ммоль/л |
Моча | до 340 ммоль/сут |
Калий | |
Плазма | 3,6-6,3 ммоль/л |
Моча | 39-91 ммоль/сут |
Кальций | |
Плазма | 2,2-2,75 ммоль/л |
Моча | 0,25-4,99 ммоль/сут |
Кальций ионизированный | 1,0-1,15 ммоль/л |
Магний | |
Плазма | 0,7-1,2 ммоль/л |
Моча | до 0,41 ммоль/сут |
Хлориды | |
Плазма | 95-110 ммоль/л |
Моча | 99,1-297,3 ммоль/сут |
Неорганический фосфор | |
Плазма | 0,81-1,55 ммоль/л |
Моча | 19,37-31,29 ммоль/сут |
Железо сыворотки крови | |
с ферразином жен. | 7,16-26,85 мкмоль/л |
муж. | 8,95-28,65 мкмоль/л |
с бетофенантролином жен. | 11,5-25,0 мкмоль/л |
муж. | 13,0-30-0 мкмоль/л |
Метод Ferene S жен. | 9,0-29,0 мкмоль/л |
муж. | 10,0-30-0 мкмоль/л |
Общая железо-связывающая способность сыворотки крови | 50-84 мкмоль/л |
Ферритин сыворотки крови жен. | 12-150 мкг/л |
муж. | 15-200 мкг/л |
Процент насыщения трансферрина железом | 16-50 % |
Содержание протопрофирина в эритроците | 18-90 мкмоль/л |
Медь жен. | 11,0-24.4 мкмоль/л |
муж. | 11,022,0 мкмоль/л |
Церулоплазмин | 1,5-2,3 г/л |
Оксалаты (моча) дет. | 8-20 мг/сут |
взр. | 25-30 мг/сут |
Ртуть (моча) | до 50 нмоль/л |
Свинец | |
Кровь | до 1,9 мкмоль/л |
Моча | 0,19 мкмоль/л |
Литий (кровь) | 0,3-1,3 ммоль/л |
Хром (кровь) | 0,86 мкмоль/л |
Берилий | |
кровь | до 0,002 мкмоль/л |
моча | 0,044 мкмоль/л |
Фтор (моча) | до 10-5 моль/л |
Метгемоглобин (кровь) | до 2 г % или 9,3-37,2 мкмоль/л |
Сульфгемоглобин | 0-0,1 % от общего количества |
Копропрофирин (моча) | 30,5-122 нмоль/г креатинина |
d-аминолевулиновая кислота (моча) | 3,9-19 мкмоль/г креатинина |
Образование и выделение кислот.
Любой организм образует большое количество кислот в 2-х формах: угольной (летучей) и в нелетучей (фиксированной) кислотах.
РН жидкостей организма слегка щелочная, поддерживается на уровне 7,4. Большая часть ионов водорода образуется как конечный продукт метаболизма. Пути удаления кислот включают почки, легкие, ЖКТ.
Формирование угольной кислоты
Т.к. диоксид углерода (СО2 ) может образовываться из Н2 СО3 и, далее, СО2 может удаляться легкими, то Н2 СО3 называется летучей кислотой.
А) К несчастью, протон-донорно-акцепторная классификация Бренстеда не допускает классификацию СО2 как кислоты, но углекислый газ функционирует как единственная слабая кислота жидкостей организма.
Б) Большая часть СО2 извлекается из окислительного метаболизма.
Формирование не угольных кислот.
Гораздо меньше образуется фиксированных кислот, кислот которые называются нелетучими, т.к. они не могут превращаться в СО2 . Не угольные кислоты организм получает из 3ех источников: пища, промежуточный метаболизм и потеря бикарбонатов со стулом.
1) Пища. Богатая белками диета больше способствует образованию кислот, чем щелочей. Такие компоненты пищи, как глюкоза, триглицериды, не являются компонентами в организме, но метабилизируются в СО2 , большинство которого гидратируется в форму Н2 СО3 , которая диссоциирует на Н+ и НСО3 ¯ . Растительная пища образует избыток щелочей, которые должны быть выведены почками.
2) Промежуточный метаболизм. Метаболизм веществ пищи склонен к закислению жидкостей организма. Некоторые продукты обладают ощелачивающим действием. Например, поступление большого количества органических кислот, содержащихся во фруктах (лактат, цитрат, изоцитрат), ведет к защелачиванию жидкостей организма, т.к. в процессе метаболизма эти органические ионы превращаются в СО2 и Н2 О. А этот процесс ведет к расходу Н+ . Около 40-60 ммоль органических и неорганических кислот, в образовании которых участвует СО2 , образуются ежедневно. Около половины этих кислот нейтрализуется основаниями, поступающими с пищей, но остальные должны нейтрализоваться буферными системами организма.
Метаболизм пищевых компонентов - важный источник некарбоновых кислот.
1. Лактат образуется при анаэробном окислении глюкозы или гликогена. В случае физической нагрузки и гипоксии чрезмерное образование молочных кислот приводит к временному увеличению синтеза неорганических кислот.
2. Ацетоацетат и β- гидроксибутират образуются при метаболизме триглицеридов. Это кетоновые тела, которые образуются из неорганических кислот при голодании. После еды ацетоацетат и β-гидроксибутират подвергаются дальнейшему расщеплению до СО2 и Н2 О.
3. Фосфорная кислота образуется при метаболизме фосфолипидов и служит значительным источником Н+ .
4. Серные кислоты образуются при распаде белков, содержащих такие аминокислоты, как цистеин, метионин - в которых есть сульфидная группа.
5. Мочевая кислота - продукт метаболизма нуклеотидов.
6. Потеря НСО3 ¯ со стулом.
Пища содержит органические соли - анионы и катионы, - которые могут превращаться в производные неорганических кислот и оснований. Органические анионы, которые подвергаются в организме метаболизму до НСО3 ¯ , включают ацетат, цитрат и в присутствии инсулина - анионы кетокислот.
Пищеварительные процессы приводят к потере 40-60ммоль щелочей с выделениями, что равнозначно прибавке нелетучих кислот в организме.
Способы поддержания концентрации Н+ в нормальных пределах
1. Комбинация Н+ с химическими буферами НСО3 - , протеины, фосфаты и гемоглобин.
2. Выделение СО2 с легочной вентиляцией.
3. Экскреция Н+ почками.
Для более точного и непрерывного измерения рН широко применяется электрометрическая регистрация (прибор рН-метр).
Постоянство рН артериальной крови.
рН артериальной крови человека (при 37°С) колеблется от 7,37 до 7,43, составляя в среднем 7,4. Необходимо уточнить, что эти значения характерны для плазмы крови (стеклянный электрод, погруженный в кровь, соприкасается именно с плазмой). В эритроцитах величину рН измерить трудно. Как было установлено, внутри эритроцита она составляет примерно 7,2-7,3 , т.е. отличается от рН плазмы. Как правило, термин “рН крови” относится к рН плазмы. Характерная для крови человека слабощелочная реакция поддерживается в очень узких пределах, несмотря на постоянно изменяющееся поступление в кровь кислых продуктов метаболизма. Такое постоянство кислых продуктов чрезвычайно важно для правильного протекания обменных процессов в клетках, т.к. деятельность всех ферментов, участвующих в метаболизме зависит от рН. При патологических сдвигах рН крови активность разных ферментов изменяется в разной степени, и в результате точное взаимодействие между реакциями обмена может нарушиться. В регуляции КЩР участвует несколько механизмов, к ним относятся буферные свойства крови, газообмен в легких и выделительная функция почек.
Механизмы регуляции рН
Участие дыхательной системы
Одна из функций дыхательной системы состоит в удалении СО2 - конечного продукта метаболизма, образующегося в больших количествах. В состоянии покоя организм выделяет 230 мл СО2 /мин, или около 15 тыс. ммоль в сутки. В то же время при удалении из крови “летучего” ангидрида угольной кислоты в ней исчезает примерно эквивалентное число ионов Н+ . Т.о. дыхание играет чрезвычайно важную роль в поддержании КЩР.
Участие почек
Кроме легких в регуляции КЩР участвуют также почки. Их функция состоит в удалении нелетучих кислот, главным образом серной кислоты. Почки должны удалять в сутки 40-60 ммоль ионов Н+ , накапливающихся за счет образования нелетучих кислот. Если содержание таких кислот возрастает, то при нормальном функционировании почек выделение Н+ с мочой может значительно увеличиваться. В результате рН крови возрастает к нормальному уровню. Напротив, при повышении рН выведение почками Н+ уменьшается, что также способствует поддержанию КЩР.