Реферат: Вопросы по курсу «МАТЕМАТИКА» для студентов 2 курса дневного отделения

24.Неравенство Чебышева.

Если известна дисперсия С.В., то с ее помощью можно оценить вероятность отклонения этой величины на заданное значение от своего мат. ожидания, причем оценка вероятности отклонения зависит лишь от дисперсии. Соответствующую оценку вероятности дает неравенство Чебышева. Неравенство Чебышева является частным случаем более общего неравенства, позволяющего оценить вероятность события, состоящего в том, что С.В. Х превзойдет по модулю произвольное число t>0. P{|X – MX|>=t}<=1/t*2 M(X – MX)*2=1/t*2 DX – неравенство Чебышева. Оно справедливо для любых С.В., имеющих дисперсию; оценка вероятности в нем не зависит от закона распределения С.В. Х.

25.Теоремы Маркова и Чебышева.

Теорема Чебышева. Если последовательность попарно независимых С.В. Х1,Х2,Х3,…,Xn,… имеет конечные мат. ожидания и дисперсии этих величин равномерно ограничены (не превышают постоянного числа С), то среднее арифметическое С.В. сходится по вероятности к среднему арифметическому их мат. ожиданий, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до n Xi – 1/n сумма по i от 1 до n M(Xi)|<эпселен)=1. В частности, среднее арифметическое последовательности попарно независимых величин, дисперсии которых равномерно ограничены и которые имеют одно и тоже мат. ожидание а, сходится по вероятности к мат. ожиданию а, т.е. если эпселен – любое положительное число, то: lim при n стремящемся к бесконечности P(|1/n сумма по i от 1 до n Xi – a|<эпселен)=1. Теорема Маркова. P{|X|>=t}<=1/tM|X| - неравенство Маркова. Док-во: 1) Для Д.С.В. Х. Пусть Х – Д.С.В., Р{X=xi}=pi, i=1,2,3,…,сумма по i от 1 до бесконечности pi=1. Тогда вероятность события {|X|>=t} равна сумме вероятностей pi, для которых xi находится вне промежутка (-t,t). Очевидно, для всех xi, не принадлежащих промежутку (-t,t), имеет место неравенство |xi|/t>=1. Учитывая это неравенство получаем: P{|X|>=t}=сумма по i: |xi|>=t pi <=сумма по i:|xi|>=t |xi|/t pi<=сумма по i:|xi|>=t |xi|/t pi+сумма по i:|xi|<t |xi|/t*pi =1/t сумма по i от 1 до бесконечности |xi|*pi=1/t*M|X|. 2) Для Н.С.В. Х. Пусть Х – Н.С.В. с плотностью вероятности р(х). Вероятность того, что |X|>=t, равна сумме интегралов от плотности вероятности по промежуткам (-бесконечность, -t) и (t,бесконечность). На этих промежутках |x|/t*t>=1. Так как |x|/t*p(x)>=0, то интеграл от –t до t по |x|/t*p(x)dx>=0. Воспользовавшись формулой M|X|=интеграл от –бесконечности до бесконечности |x| p(x) dx, в результате преобразований получаем неравенство Маркова.

26.Центральная предельная теорема, следствия (теорема Муавра-Лапласа).

Локальная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит ровно k раз (безразлично, в какой последовательности), приближенно равна (тем точнее, чем больше n). Pn(k)=1/(корень из npq)*фи(х). Здесь Фи(х)=1/(корень из 2пи)*е в степени –х*2/2, x=k – np/(корень из npq). Интегральная теорема Лапласа. Вероятность того, что в n независимых испытаниях, в каждом из которых вероятность появления события равна р(0<p<1), событие наступит не меньше k1 раз и не более k2 раз, приближенно равна: P(k1;k2)=Ф(х’’) – Ф(х’). Здесь Ф(х)=1/(корень из 2пи) * интеграл от0 до х е в степени –(z*2/2)dz – функция Лапласа, х’=(k1 – np)/(корень из npq), х’’=(k2 – np)/(корень из npq).

27.Двумерная С.В. Двумерная функция распределения и ее свойства.

Двумерной называют С.В. (Х,Y), возможные значения которой есть пары чисел (x,y). Составляющие Х и Y, рассматриваемые одновременно, образуют систему двух С.В. Дискретной называют двумерную величину, составляющие которой дискретны. Непрерывной называют двумерную величину, составляющие которой непрерывны. Законом распределения Д.С.В. называют соответствие между возможными значениями и их вероятностями. Функция распределения вероятностей Д.С.В. называют функцию F(X,Y), определяющую для каждой пары чисел (х,y) вероятность того, что Х примет значение, меньшее х, при этом Y примет значение, меньшее y: F(x,y)=P(X<x,Y<y). Свойства:1) Значения функции распределения удовлетворяют двойному неравенству: 0<=F(x,y)<=1. 2) Функция распределения есть неубывающая функция по каждому аргументу:F(x2,y)>=F(x1,y), если х2>x1. F(x,y2)>=F(x,y1), если y2>y1. 3) Имеют место предельные соотношения: 1) F(-бесконечность, у)=0, 2) F(x,-бесконечность)=0, 3) F(-бесконечность, -бесконечность)=0, 4) F(бесконечность, бесконечность)=1. 4) а) при у=бесконечность функция распределения системы становится функцией распределения составляющей Х: F(x,бесконечность)=F1(x). Б) при х=бесконечность функция распределения системы становится функцией распределения составляющей У: F(бесконечность, у)=F2(y).

28.Условные и безусловные законы распределения компонент двумерной С.В.

Условные. 1) Для дискретной двумерной С.В. Пусть составляющие X и Y дискретны и имеют соответственно следующие возможные значения: x1,x2,…,xn; y1,y2,…,ym. Условным распределением составляющей Х при Y=yj (j сохраняет одно и то же значение при всех возможных значениях Х) называют совокупность условных вероятностей p(x1|yj), p(x2|yj),…,p(xn|yj). Аналогично определяется условное распределение Y. Условные вероятности составляющих Х и Y вычисляют соответственно по формулам: p(xj|yi)=p(xi,yj)/p(yj), p(yj|xi)=p(xi,yj)/p(xi).

29.Корреляционный момент, коэффициент корреляции.

Корреляционным моментом СВ x и h называется мат. ожидание произведения отклонений этих СВ. m x h =М((x —М(x ))*(h —М(h )))

Для вычисления корреляционного момента может быть использована формула:

m x h =М(x *h )—М(x )*М(h ) Доказательство: По определению m x h =М((x —М(x ))*(h —М(h ))) По свойству мат. ожидания

m x h =М(x h —М(h )—h М(x )+М(x )*М(h ))=М(x h )—М(h )*М(x )—М(x )*М(h )+М(x )*М(h )=М(x h )—М(x )*(h )

Предполагая, что x и h независимые СВ, тогда m x h =М(x h )—М(x )*М(h )=М(x )*М(h )—М(x )*М(h )=0; m x h =0. Можно доказать, что если корреляционный момент=0, то СВ могут быть как зависимыми, так и независимыми. Если m x h не равен 0, то СВ x и h зависимы. Если СВ x и h зависимы, то корреляционный момент может быть равным 0 и не равным 0. Можно показать, что корреляционный момент характеризует степень линейной зависимости между составляющими x и h . При этом корреляционный момент зависит от размерности самих СВ. Чтобы сделать характеристику линейной связи x и h независимой от размерностей СВ x и h , вводится коэффициент корреляции:

Кx h =m x h /s (x )*s (h ) Коэффициент корреляции не зависит от разностей СВ x и h и только показывает степень линейной зависимости между x и h , обусловленную только вероятностными свойствами x и h . Коэффициент корреляции определяет наклон прямой на графике в системе координат (x ,h ) Свойства коэффициента корреляции.

-1<=Кx h <=1

Если Кx h =± 1, то линейная зависимость между x и h и они не СВ.

Кx h >0, то с ростом одной составляющей, вторая также в среднем растет.

Кx h <0, то с убыванием одной составляющей, вторая в среднем убывает.

D(x ± h )=D(x )+D(h )± 2m x h

Доказательство.

D(x ± h )=M((x ± h )2)—M2(x ± h )=M(x 2± 2x h +h 2)—(M(x )± M(h ))2=M(x 2)± 2M(x h )+M(h 2)—+M2(x )+2M(x )*M(h )—M2(h )=D(x )+D(h )± 2(M(x h ))—M(x )*M(h )=D(x )+D(h )± 2m x h

30.Предмет математической статистики. Генеральная совокупность и выборка.

Мат. статистика опирается на теорию вероятностей, и ее цель – оценить характеристики генеральной совокупности по выборочным данным. Генеральной совокупностью называется вероятностное пространство {омега,S,P} (т.е. пространство элементарных событий омега с заданным на нем полем событий S и вероятностями Р) и определенная на этом пространстве С.В. Х. Случайной выборкой или просто выборкой объема n называется последовательность Х1,Х2,…,Xn, n независимых одинаково распределенных С.В., распределение каждой из которых совпадает с распределением исследуемой С.В. Х. Иными словами, случайная выборка – это результат n последовательных и независимых наблюдений над С.В. Х, представляющей генеральную совокупность.

31.Выборочное оценивание функции распределения и гистограмма.

Наиболее полная характеристика С.В. – это ее Ф.Р. Пусть х1,х2,…,xn – выборка из генеральной совокупности, представленной С.В. Х. Рассмотрим, как оценить Ф.Р. F(x) этой С.В., о которой известно только, что она непрерывна. Чтобы построить оценку F^n(x) Ф.Р. F(x), обычно располагают наблюдения xi в порядке их возрастания, т.е. находят вначале X*1=minXi, затем следующее по величине наблюдаемое значение и т.д.; если есть одинаковые значения, то их расположение не играет никакой роли. Последовательность неубывающих величин Х*1<=X*2<=X*n, полученных после упорядочения выборки, называется вариационным рядом. Существует статистическое и эмпирическое распределение. Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длины h, а высоты равны отношению ni/h (плотность частоты), где ni – сумма частот вариант попавших в i-ый интервал.

К-во Просмотров: 431
Бесплатно скачать Реферат: Вопросы по курсу «МАТЕМАТИКА» для студентов 2 курса дневного отделения