Реферат: Воздействие электростанций на окружающую среду
2) удаление серы из топлива до его сжигания.
К настоящему времени по обоим направлениям достигнуты определённые результаты. В числе достоинств первого подхода следует назвать его безусловную эффективность – удаляется до 90-95% серы – возможность применения практически вне зависимости от вида топлива. К недостаткам следует отнести большие капиталовложения. Энергетические потери для ТЭС, связанные с сероочисткой, ориентировочно составляют 3-7%. Основным преимуществом второго пути является то, что очистка осуществляется независимо от режимов работы ТЭС, в то время как установки по сероочистке дымовых газов резко ухудшают экономические показатели электростанций за счёт того, что большую часть времени вынуждены работать в нерасчётном режиме. Установки же по сероочистке топлив можно всегда использовать в номинальном режиме, складируя очищенное топливо.
Проблема снижения выбросов окислов азота ТЭС серьёзно рассматривается с конца 60-х годов. В настоящее время по этому вопросу уже накоплен определённый опыт. Можно назвать следующие методы:
1) уменьшение коэффициента избытка воздуха (так можно добиться снижения содержания окислов азота на 25-30%, уменьшив коэффициент избытка воздуха (α) с 1,15 - 1,20 до 1,03);
2) улавливание окислов с последующей переработкой в товарные продукты;
3) разрушение окислов до нетоксичных составляющих.
Для уменьшения концентрации вредных соединений в приземном слое воздуха котельные ТЭС оборудуют высокими, до 100-200 и более метров, дымовыми трубами. Но это приводит также к увеличению площади их рассеивания. В результате крупными промышленными центрами образуются загрязнённые области протяженностью в десятки, а при устойчивом ветре – в сотни километров.
III . Гидравлические электростанции
Несомненно, по сравнению с электростанциями, работающими на органическом топливе, более чистыми с экологической точки зрения являются электростанции, использующие гидроресурсы: отсутствуют выбросы в атмосферу золы, оксидов серы и азота. Это важно, поскольку ГЭС довольно распространены и находятся на втором месте после ТЭС по выработке электроэнергии (диаграмма №1).Обострение экологической ситуации, как в мире, так и в нашей стране, к началу 90-х годов послужило поводом для возобновления дискуссий по проблемам экологии в гидроэнергетике. В нашей стране приоритет охраны окружающей среды был признан на Всесоюзном научно-техническом совещании «Будущее гидроэнергетики. Основные направления создания гидроэлектростанций нового поколения» (1991 год). Наиболее резко прозвучали вопросы создания высоконапорных ГЭС с крупными водохранилищами, затопления земель, качества воды, сохранения флоры и фауны.
Действительно, работа данного типа электростанций также сопряжена со значительными отрицательными изменениями в окружающей среде, которые связаны с созданием плотин и водохранилищ. Многие изменения приходят к равновесию с окружающей средой через длительное время, что затрудняет прогноз возможного влияния на окружающую среду новых электростанций.
|
Создание ГЭС связано с затоплением земельных ресурсов. Всего в настоящее время в мире затоплено более 350 тыс. км². В это число входят земельные площади, пригодные для сельскохозяйственного использования. Перед затоплением земель не всегда проводится лесоочистка, поэтому оставшийся лес медленно разлагается, образуя фенолы, тем самым, загрязняя водохранилище. Кроме того, в прибрежной полосе водохранилища меняется уровень грунтовых вод, что приводит к заболачиванию местности и исключает использование этой местности в качестве сельскохозяйственных угодий.
Большие амплитуды колебаний уровней воды на некоторых водохранилищах неблагоприятно сказываются на воспроизводстве рыбы; плотины преграждают путь (на нерест) проходным рыбам; на некоторых водохранилищах развиваются процессы эвтрофирования, в основном обусловленные сбросом в реки и водоёмы сточных вод, содержащих большое количество биогенных элементов. Биологическая продуктивность водохранилищ увеличивается при попадании в них с речной водой биогенных элементов (азота, фосфора, калия). Вследствие этого в водоёмах усиленно развиваются сине-зеленые водоросли, происходит т.н. цветение воды. На окисление обильно отмирающих водорослей расходуется большое количество растворённого в воде кислорода, в анаэробных условиях из их белка выделяется ядовитый сероводород, и вода становится мёртвой. Этот процесс развивается сначала в придонных слоях воды, затем постепенно захватывает большие водные массы – происходит эвтрофирование водоёма. Такая вода непригодна для водоснабжения, в ней резко снижается рыбная продуктивность. Интенсивность развития процесса эвтрофирования зависит от степени проточности водоёма и от его глубины. Как правило, самоочищение воды в озёрах и водохранилищах происходит медленнее, чем в реках, поэтому по мере роста числа водохранилищ на реке её самоочищающая способность уменьшается.
Для ГЭС характерно изменение гидрологического режима рек – происходит изменение и перераспределение стока, изменение уровневого режима, изменение режимов течений, волнового, термического и ледового. Скорости течения воды могут уменьшаться в десятки раз, а в отдельных зонах водохранилища могут возникать полностью застойные участки. Специфичны изменения термического режима водных масс водохранилища, который отличается как от речного, так и от озёрного. Изменение ледового режима выражается в сдвиге сроков ледостава, увеличении толщины ледяного покрова водохранилища на 15-20%, в то время как у водосливов образуются полыньи. Изменяется тепловой режим в нижнем бьефе: осенью поступает более тёплая вода, нагретая в водохранилище за лето, а весной – холоднее на 2-4ºC в результате охлаждения в зимние месяцы. Эти отклонения от естественных условий распространяются на сотни километров от плотины электростанции.
Изменение гидрологического режима и затопление территорий вызывает изменение гидрохимического режима водных масс. В верхнем бьефе массы воды насыщаются органическими веществами, поступающими с речным стоком и вымываемыми из затопленных почв, а в нижнем – обедняются, т.к. минеральные вещества из-за малых скоростей течения осаждаются на дно. Так, в результате регулирования стока Волги поступление минеральных веществ в Каспийское море сократилось почти в три раза. Резко изменились условия стока Дона в Азовское море, что вызвало изменение водообмена Азовского и Чёрного морей и изменение солевого состава Азовского моря.
Как в верхнем, так и в нижнем бьефе изменяется газовый состав и газообмен воды. В результате изменения русловых режимов в водохранилищах образуются наносы.
Создание водохранилищ может вызвать землетрясения даже в асейсмичных районах из-за просачивания воды в границы разломов. Подтверждением этому служат землетрясения в долинах рек Миссисипи, Чайры (Индия) др.
Урон, наносимый ГЭС, во многом можно уменьшить или компенсировать.Эффективным способом уменьшения затопления территорий является увеличение количества ГЭС в каскаде с уменьшением на каждой ступени напора и, следовательно, зеркала водохранилищ. Несмотря на снижение энергетических показателей, низконапорные гидроузлы, обеспечивающие минимальное затопление земель, лежат в основе всех современных разработок. Затопление земель также компенсируется культивацией почв в других районах и повышением рыбной продуктивности водохранилищ. Ведь с каждого гектара акватории можно получать больше животного белка, чем с сельскохозяйственных угодий. Для достижения этого служат рыбные заводы. Также следует уменьшать площадь затопляемой земли на единицу создаваемой мощности. Для облегчения прохода рыбы через сооружения гидроузла изучают поведение рыб у гидротехнических сооружений, их отношение к потоку и температуре воды, к рельефу дна и освещённости; создают рыбопропускные шлюзы – с помощью специальных приспособлений её привлекают в рыбонакопитель, а затем из предплотинных участков реки переводят в водохранилище. Радикальным же способом предупреждения эвтрофирования водоёмов является прекращение сброса сточных вод.
IV . Атомные электростанции
Иллюзия о безопасности атомной энергетики была разрушена после
нескольких больших аварий в Великобритании, США и СССР, апофеозом
которых стала катастрофа на чернобыльской АЭС. В эпицентре аварии уровень загрязнения был настолько высок, что население ряда районов пришлось эвакуировать, а почвы, поверхностные воды, растительный покров оказались радиоактивно зараженными на многие десятилетия. Всё это обострило понимание того, что мирный атом требует особого подхода.
Однако опасность атомной энергетики лежит не только в сфере аварий и катастроф. Даже когда АЭС работает нормально, она обязательно выбрасывает изрядное количество радиоактивных изотопов (углерод-14, криптон-85, стронций-90, йод-129 и 131). Нужно отметить, что состав радиоактивных отходов и их активность зависят от типа и конструкции реактора, от вида ядерного горючего и теплоносителя. Так, в выбросах водоохлаждаемых реакторов превалируют радиоизотопы криптона и ксенона, в графитогазовых реакторах – радиоизотопы криптона, ксенона, йода и цезия, в натриевых быстрых реакторах – инертные газы, йод и цезий.
|
|
Рис. 3. Влияния АЭС на окружающую среду
Обычно, когда говорят о радиационном загрязнении, имеют в виду гамма-излучение, легко улавливаемое счетчиками Гейгера и дозиметрами на их основе. В то же время есть немало бета-излучателей, которые плохо обнаруживаются существующими массовыми приборами. Также как радиоактивный йод концентрируется в щитовидной железе, вызывая ее поражение, радиоизотопы инертных газов, в 70-е годы считавшиеся абсолютно безвредными для всего живого, накапливаются в некоторых клеточных структурах растений (хлоропластах, митохондриях и клеточных мембранах). Одним из основных выбрасываемых инертных газов является криптон-85. Количество криптона-85 в атмосфере (в основном за счет работы АЭС) увеличивается на 5 % в год. Еще один радиоактивный изотоп, не улавливаемый никакими фильтрами и в больших количествах производимый всякой АЭС – углерод-14. Есть основания предполагать, что накопление углерода-14 в атмосфере (в виде CO2 ) ведет к резкому замедлению роста деревьев. Сейчас в составе атмосферы количество углерода-14 увеличено на 25% по сравнению с доатомной эрой.
Важной особенностью возможного воздействия АЭС на окружающую среду является необходимость демонтажа и захоронения элементов оборудования, обладающих радиоактивностью, по окончании срока службы или по другим причинам. До настоящего времени такие операции производились лишь на нескольких экспериментальных установках.
При нормальной работе в окружающую среду попадают лишь немногие ядра газообразных и летучих элементов типа криптона, ксенона, йода. Расчёты показывают, что даже при увеличении мощностей атомной энергетики в 40 раз её вклад в глобальное радиоактивное загрязнение составит не более 1% от уровня естественной радиации на планете.
На электростанциях с кипящими реакторами (одноконтурными) большая часть радиоактивных летучих веществ выделяется из теплоносителя в конденсаторах турбин, откуда вместе с газами радиолиза воды выбрасываются эжекторами в виде парогазовой смеси в специальные камеры, боксы или газгольдеры выдержки для первичной обработки или сжигания. Остальная часть газообразных изотопов выделяется при дезактивации растворов в баках выдержки.
На электростанциях с реакторами, охлаждаемыми водой под давлением, газообразные радиоактивные отходы выделяются в баках выдержки.
Газообразные и аэрозольные отходы из монтажных пространств, боксов парогенераторов и насосов, защитных кожухов оборудования, ёмкостей с жидкими отходами выводятся с помощью вентиляционных систем с соблюдением нормативов по выбросу радиоактивных веществ. Воздушные потоки из вентиляторов очищаются от большей части аэрозолей на тканевых, волокнистых, зерновых и керамических фильтрах. Перед выбросом в вентиляционную трубу воздух проходит через газовые отстойники, в которых происходит распад короткоживущих изотопов (азота, аргона, хлора и др.).
Помимо выбросов, связанных радиационным загрязнением, для АЭС, как и для ТЭС, характерны выбросы теплоты, влияющие на окружающую среду. Примером может служить атомная электростанция «Вепко Сарри». Её первый блок был пущен в декабре 1972 г., а второй – в марте 1973 г. При этом температура воды у поверхности реки вблизи электростанции в 1973г. была на ≈4ºC выше температуры в 1971г. и максимум температур наблюдался на месяц позже. Выделение тепла происходит также в атмосферу, для чего на АЭС используются т.н. градирни. Они выделяют 10-400 МДж/(м²·ч) энергии в атмосферу. Широкое применение мощных градирен выдвигает рад новых проблем. Расход охлаждающей воды для типового блока АЭС мощностью 1100 МВт с испарительными градирнями составляет 120 тыс. т/ч (при температуре окружающей воды 14ºC). При нормальном солесодержании подпиточной воды за год выделяется около 13,5 тыс. т солей, выпадающих на поверхность окружающей территории. До настоящего времени нет достоверных данных о влиянии на окружающую среду этих факторов.
На АЭС предусматриваются меры для полного исключения сброса сточных вод, загрязнённых радиоактивными веществами. В водоёмы разрешается отводить строго определённое количество очищенной воды с концентрацией радионуклидов, не превышающей уровень для питьевой воды. Действительно, систематические наблюдения за воздействием АЭС на водную среду при нормальной эксплуатации не обнаруживают существенных изменений естественного радиоактивного фона. Прочие отходы хранятся в ёмкостях в жидком виде или предварительно переводятся в твёрдое состояние, что повышает безопасность хранения.
V . Альтернативная энергетика
Всё большее обсуждение получают электростанции, использующие возобновляемые источники энергии – приливные, геотермальные, солнечные, космические солнечные, ветровые и некоторые другие. Разрабатываются их новые проекты, сооружаются опытные и первые промышленные установки. Это вызвано как экономическими, так и экологическими факторами. На «альтернативные» электростанции возлагают большие надежды с точки зрения снижения антропогенной нагрузки на окружающую среду. Европейский союз, например, планирует увеличить в ближайшие несколько лет долю вырабатываемой такими электростанциями энергии.
Распространению «альтернативных» электростанций препятствуют разнообразные технические и технологические сложности. Не лишены эти электростанции и экологических недостатков. Так, ветровые электростанции являются источниками т.н. шумового загрязнения, солнечные электростанции достаточных мощностей занимают большие площади, что портит ландшафт и изымает из земли из сельскохозяйственного оборота. Действие космических солнечных электростанций (в проекте) связано с передачей энергии на Землю посредством высококонцентрированного пучка микроволнового излучения. Его возможное действие не изучено и характеризуется как предположительно негативное. Отдельно стоят геотермальные электростанции. Их влияние на атмосферу характеризуется возможными выбросами мышьяка, ртути, соединения серы, бора, силикатов, аммиака и других веществ, растворённых в подземных водах. В атмосферу выбрасываются также водяные пары, что связано с изменением влажности воздуха, выделением тепла, шумовыми эффектами. Воздействие геоТЭС на гидросферу проявляется в нарушении балансов подземных вод, круговорота веществ, связанного с подземными водами. Воздействие на литосферу связано с изменением геологии пластов, загрязнением и эрозией почвы. Возможны изменения сейсмичности районов интенсивного использования геотермальных источников.
VI . Вывод
Развитие энергетики оказывает воздействие на различные компоненты природной среды: на атмосферу, на гидросферу, на литосферу. В настоящее время это воздействие приобретает глобальный характер, затрагивая все структурные компоненты нашей планеты. Выходом для общества из этой ситуации должны стать: внедрение новых технологий (по очистке, рециркуляции выбросов; по переработке и хранению радиоактивных отходов и др.), распространение альтернативной энергетики и использование возобновляемых источников энергии (*).