Реферат: Воздействие радиационного излучения на операционные усилители

В литературе отмечается, что отклонение вы­ходного напряжения ИОУ от нуля при спецвоз­действии обусловлено не изменением выходных потенциалов дифференциальных каскадов, а в ос­новном происходит из-за нарушения режима по постоянному току выходных повторителей, при­чем это отклонение имеет одну и ту же поляр­ность, т.е. выходное напряжение отклоняется в сторону положительного источника питания. Экс­периментально было проверено, действительно ли влияние фототоков в выходных повторителях яв­ляется определяющим.

Влияние ИИ на шумовые характеристики дифф-каскада.

В каскадах на биполярных транзисторах в области средних и высших частот шумо­вого спектра, где преобладают дробовой шум токораспределения iш.к и тепловой шум объемного сопротивления базы eш.б , при облучении уровень шумов возрастает в результате деградации коэффициента пере­дачи тока базы b и увеличения объемных сопротивлений.

Влияние теплового шума сопро­тивления коллекторного слоя eшк , а также шумовых сигналов паразитного транзистора iшфи , iш f и не так существенно. В области низ­ших частот преобаладают шумы со спектром 1/ f, атакже низкочастотные шумы фототоков. Анализ низкочастотных шу­мов усложняется тем, что их изменение при облучении определяется не только объемными эффектами, но и поверхностными. Действие ионизирующих излучений приводит не тоолько к повышению уровня низкочастотных шумов, но также к увеличению граничной частоты f ш , т.е. к сдвигу их спектральной плотности в область более высоких частот.

В дифференциальных каскадах на униполярных транзисторах в об­ласти средних и высших частот, где преобладают тепловой шум ка­нала iшс и дробовой шум тока затвора iш .з шумы при облучении воз­растают из-за уменьшения крутизны характеристики транзистора S и увеличения тока затвора вследствие роста тока генерации в управ­ляющем р-n-переходе. Возрастают также низкочастотные шумы, об­условленные флуктуациями заряда токов генерации—рекомбинации в обедненном слое изолирующего р-n-перехода. При этот относитель­ное увеличение шумового сопротивления практически не зависит от частоты.

Уровень собственных шумов каскада повышается из-за шумов фото­токов, особенно при высоких импедансах источника сигнала.

Уровень шумов дифференциального каскада зависит также от схе­мы подачи входного сигнала и съема выходного напряжения. На практи­ке нередко подают сигнал только на один из входов каскада По отношению к этому входу интенсивность первичного шумового на­пряжения возрастает.

Сравнение дифференциальных каскадов на биполярных и униполяр­ных транзисторах по их шумовым показателям в области средних час­тот показывает, что в первых из них при работе от источников с Rг >> 103 Ом уровень шума выше. Следует иметь в виду, что каскады на униполярных транзисторах менее критичны к выбору оптималь­ного сопротивления источника входного сигнала, а поэтому изме­нение условия оптимальности при облучении не приводит к дополни­тельному увеличению шума.

Радиационные эффекты в ИОУ.

Воздействие ИИ на параметры ИОУ.

Интегральные операционные усилители (ИОУ) представляют собой высококачественные прецизионные усилители, которые относятся к классу универсальных и многофункциональных аналоговых микро­схем. Радиационная стойкость аналоговых ИМС определяется не только влиянием ионизирующих излучений на характеристики элемен­тов микросхемы, но она зависит также от структуры ИМС и схемотехнических особенностей. Поскольку боль­шинство современных аналоговых ИМС построены по структуре ИОУ, то на их примере можно выяснить влияние радиационных эффектов на характеристики аналоговых микросхем.

Специализированные ИОУ частного применения, к числу ко­торых относятся микросхемы с повышенным входным сопротив­лением, прецизионные и микромощные ИОУ, быстродействую­щие усилители [11], обычно более чувствительны к остаточным радиационным эффектам, так как схемотехнические и технологи­ческие меры, применяемые для достижения предельных возмож­ностей по каким-либо параметрам, как правило, приводят к сни­жению их радиационной стойкости. Особенно чувствительны к воздействию облучения ИОУ при работе в микрорежиме. Это объясняется тем, что в микрорежиме деградация параметров транзисторов происходит при более низких флюенсах.

Причиной нарушения нормальной работы ИОУ являются также переходные ионизационные эффекты, обусловленные об­разованием мощных импульсов фототоков во всех областях кри­сталла, включая не только области, где формированы рабочие транзисторы, диодные структуры, диффузионные резисторы, но также изолирующие и приповерхностные слои ИМС. Изоляция р-n-переходами является серьезным недостатком ИОУ, работаю­щих в полях ионизирующих излучений. Воздействие γ-излучения, электронного и высокоэнергетического нейтронного > 14 МэВ) излучений приводит к образованию через изоли­рующие p-n-переходы мощных фототоков, которые могут быть причиной нарушения электрической изоляции р- и n-областей, возрастания рассеиваемой мощности, возникновения тиристорного эффекта, пробоя как в рабочих, так и в паразитных транзисто­рах. Значительный вклад в образование фототоков вносят участ­ки подложки, прилегающие к изолирующим p-n-переходам. По­этому эти токи можно заметно уменьшить легированием подложки с тыльной стороны золотом, уменьшающим время жизни но­сителей в подложке. Наиболее эффективным способом уменьше­ния фототоков является применение диэлектрической изоляции, а также использование пленочных резисторов вместо диффузион­ных.

Воздействие ионизирующего излучения сказывается также на частотных и импульсных характеристиках ИОУ в области ма­лых времен. При облучении, создающем объемные структурные повреждения, частота единичного усиления для некорректированного ИОУ меняется незначительно вплоть до флюенсов 1015 нейтр./см2 и более. Верхняя граничная частотадля боль­шинства ИОУ возрастает, что объясняется уменьшением коэф­фициентов усиления каскадов, вследствие чего уменьшается влияние паразитных емкостей. Эти изменения приводят к сниже­нию запаса устойчивости, oднако поскольку в реальных условиях послед­няя тоже уменьшается, то в итоге при облучении самовозбужде­ние ИОУ маловероятно.

Критериальные параметры для оценки стойкости ОУ.

Как правило, нормативная документация (НД) на ИОУ устанавливает отклонение выходного на­пряжения от нуля ΔUвх от , приведенного ко входу, в качестве критериального параметра при опреде­лении уровня бессбойной работы (УБР) и времени потери работоспособности (ВIIP) при воздействии импульсного ИИ.

Типовая схема включения по НД для контроля параметра ΔUвх .от показана на рис.2, причем коэффициент усиления схемы Ки выбира­ется в диапазоне от 10 до 1000 без должного обос­нования. Напряжение отклонения от нуля рассчи­тывается по упрощенной формуле:

ΔUвх .от = ΔUвых / Ku .

Критерий работоспособности ИОУ по пара­метру UBX для определения УБР и ВПР задается выражением

ΔUвх .от £ ΔUвх .от норм или ΔUвых £ ΔUвх .от норм Ku

Как показали эксперименты, в зависимости от технологии существенно различаются чувствительность к воздействию стационарного ИИ того или иного параметра однотипных ОУ, различаются зависимость АЧХ от величины поглощенной дозы, уровень катастрофического отказа, характер изменения напряжения смещения нуля и др. Так, например, уровень катастрофического отказа ОУ 140УД17 различается на порядок в зависимости от предприятия изготовителя. В связи с этим один и тот же тип ОУ мог соответствовать либо нет нормам ТУ. Т.о. очевидна невозможность прогнозирования радиационного поведения ОУ по результатам исследования схем того же типа, но другого конструктивно-технологического исполнения. Более того, подтверждается неинформативность использования одного и того же критериального параметра для сравнительной оценки радиационной стойкости всех ОУ, т.к. критериальный параметр, т.е. наиболее чувствительный к воздействию того или иного типа ИИ, определяется технологией изготовления микросхемы.

Ниже приведена таблица параметров, реагирующих на воздействие ИИ для некоторых усилителей.

Марка ОУ Параметры ОУ, подверженные радиации
OP 400 +Ib, -Ib, Gain_2k, Slew Rate
OP 467 +Ib, -Ib, Icc, Voh_2k
AD 620 +Ib, -Ib, PSRR_pos, +Swing, all of gain_errors
AD 845 Icc, P_PSRR_A, Vol
LF 147 None
LF 155a +Ib, -Ib
LMC 6464 +Ib, -Ib, Ios, Voh_100k A-D, Vol_100k A-D, Slew Rate A-D, GBW A-D
OP 07 (0,14R(Si)/s) VOS, P_IIB, N_IIB, IIOS, CMRR, P_AOL_2k, N_AOL_2k, Slew Rate
OP 07 (0,58R(Si)/s) VOS, P_IIB, N_IIB, IIOS, CMRR, PSRR, VOUT, AOL, Slew Rate
OP 15 VOS, +Ibias, -Ibias, Iio
OP 27 VOS, P_IIB, N_IIB
OP 77 VOS_0V, P_IIB_0V, N_IIB_0V
OP 270 +Ib_A, -Ib_A, +Ib_B, -Ib_B, Ios_A, Ios_B, Open Loop Gain B
PA07M/883 Voffset
LM 10

VOS, P_IIB, N_IIB, IIOS, CMRR, PSRR, AOL, ASH, REF GAIN, V_FB,

I_FB, Line Reg, Load Reg

OP 07A

VOS_0V, P_IIB_0V, N_IIB_0V, P_AOL, N_AOL, IIOS_0V, CMRR,

+PSRR, -PSRR

AD 645 vio

Из представленного материала, подтверждае­мого многочисленными экспериментами, следует, что напряжение смещения нуля, определяемое как приведенное к входу выходное напряжение не яв­ляется информативным параметром при опреде­лении уровня бессбойной работы ИОУ при воз­действии импульсных спецфакторов. Более ин­формативным показателем стойкости ИОУ при воздействии ИИИ является время потери работоспособности (ВПР), определяемое по уменьшению отклонения выходного напряже­ния до заданного уровня.

Выбор общего критерия работоспособности для определения УБР и ВПР, отражающего спо­собность ИОУ усиливать сигнал с заданной точ­ностью, можно осуществить только условно без привязки к конкретному применению ИОУ. Пря­мая оценка по наихудшему случаю (например включение ИОУ без ОС) также неинформатив­на, так как при этом получаются заведомо завы­шенные значения ВПР. Однако предварительные оценки показывают, что в этом случае возможен пересчет полученных значений ВПР к конкрет­ной схеме включения.

Проектирование радиационно-стойких ИОУ.

На этапе проектирования проблему повыше­ния радиационной стойкости аппаратуры наибо­лее эффективно можно решить соответствую­щим выбором способа коррекции переходных и частотных характеристик усилителя. Наи­лучшие результаты получаются при включении быстродействующего канала (см.рис.3) параллельно наибо­лее инерционному каскаду интегрального операци­онного усилителя, а наихудшие результаты при коррекции интегрирующим конденсатором Скор , подключаемым между выходом и входом каскада промежуточного усилителя в микросхеме.

Рис.3. Аналоговое устройство на АИМС с параллельным бы­стродействующим каналом:

а - структурная схема;

б - схема замещения

Включение быстродействующего канала при определенных условиях существенно повышает быстродействие интегрального операционного усилителя и, соответственно, частоту единичного усиления f 1ис . Это позволяет, используя низкочастотную микросхему с повышенной радиационной стойкостью, спроектировать быстродействую­щий усилитель, способный работать нормально при заметно большем уровне ионизирующего из­лучения. Этот способ коррекции одновременно позволяет на порядок и более сократить продол­жительность ВПР усилителя. Реализация этого способа коррекции возможно только у интегрального операционно­го усилителя с дополнительными выводами для подключения корректирующего конденсатора (как, например микросхема LM101A и ее аналог 153УД2). При этом быстродействующий канал, подключаемый к указанным выводам, строят на дискретных элементах. Указанными особеннос­тями реализации объясняется ограниченное при­менение этого способа коррекции.

Включение корректирующего конденсатора Скор , во-первых, приводит к уменьшению импульс­ной добротности интегрального операционного усилителя в (1 + Скорис )1/2 раз и, соответственно ча­стоты единичного усиления f 1кор . При этом прихо­дится использовать более высокочастотные мик­росхемы, которые, как правило, обладают мень­шей радиационной стойкостью. Во-вторых, оно сопровождается заметным увеличением коэффи­циента передаточной функции интегрального операционного усилителя

К-во Просмотров: 229
Бесплатно скачать Реферат: Воздействие радиационного излучения на операционные усилители