Реферат: Временные характеристики и функция времени. Графическое представление частотных характеристик

В этих выражениях нередко верхний предел интегрирования полагается равным бесконечности. При определенных условиях это можно делать.

Для физически осуществимых систем значение импульсной переходной функции равно нулю при отрицательных значениях аргумента, т.е. для таких систем

.

Поэтому верхний предел в выражении (1) можно устремить к бесконечность, т.е. положить

Именно в такой форме обычно используется выражение выходного процесса через входной во временной (в действительной) области.

Нередко в качестве входного воздействия принимается не просто воздействие при нулевых начальных условиях, а равное нулю при отрицательном времени.

Однако, если при , то и верхний предел в выражении (2) можно устремить к бесконечности, не изменив значения интеграла, т.е. положить

.

В приведенных выше выражениях нет уточнения, что считать входным, а что выходным процессом. Эти понятия определяют вместе с определением передаточной функции. Если под входным процессом понимать управляющее воздействие, а в качестве выхода рассматривать сигнал ошибки, то для получения изображения сигнала ошибки следует воспользоваться передаточной функцией по ошибке. Обратное преобразование Лапласа от такой передаточной функции называется импульсной переходной функцией по ошибке. Она позволяет определить сигнал ошибки по выражению входного сигнала (во временной области):

.

Здесь - импульсная переходная функция системы по ошибке, обратное преобразование по Лапласу от передаточной функции по ошибке.

И вообще, если рассматривать выражения выходного сигнала через внешние воздействия в частотной области как сумму произведений изображений, то в действительной области каждому такому произведению будет соответствовать свертка.

Другими словами, выходной процесс системы, на которую действуют управляющее и возмущающее воздействия со своими передаточными функциями и , в действительной области можно представить в виде

,

.


5 Графические представления частотных характеристик

Как уже отмечалось, частотные представления являются основой классических методов теории автоматического управления. С частотных характеристик и началось знакомство с теорией управления. Ведение и использование передаточных функций не означает отклонения от частотного направления. Различие между введенными ранее понятиями частотной характеристики и передаточной функции чисто формальное. Как только заходит речь о графическом представлении, неважно, частотных характеристик или передаточных функций, переменная s в выражении передаточной функции заменяется на переменную jw и изображению подлежит только частотная характеристика.

Среди всех графических представлений частотных характеристик особой популярностью пользуются годографы Найквиста и диаграммы Боде. В настоящее время более употребительны диаграммы Боде, но они являются производными от годографов Найквиста, поэтому рассмотрим сначала годографы Найквиста.

1 Годограф Найквиста.

Представление частотной характеристики

на плоскости комплексной переменной в зависимости от частоты называется амплитудно-фазовой частотной характеристикой (а.ф.ч.х.). Вообще говоря, с изменением частоты w от нуля до бесконечности (0 < w <¥) вектор в плоскости комплексного переменного будет поворачиваться и его конец опишет некоторую кривую, называемую годографом. Применительно с частотным характеристикам этот годограф называется годографом Найквиста (а.ф.ч.х.).

На рисунке 1 приведен типичный пример годографа Найквиста в положительном диапазоне частот (0 < w <¥). На нем показаны все составляющие частотной характеристики как комплексной функции вещественного аргумента.

Иногда, (например, в ППП ControlSystemToolbox) годограф строится во всем диапазоне частот (-¥ < w <¥). Не трудно доказать, что при отрицательных значениях частот годограф симметричен годографу при положительных значениях частот (относительно вещественной оси).


Рисунок 1 - Годограф Найквиста

2 Диаграммы Боде

Логарифмические амплитудные и фазовые частотные характеристики (ЛЧХ), называемые диаграммами Боде, получили гораздо большее распространение, чем годографы Найквиста.

Прологарифмировав выражение частотной характеристики (через амплитудную и фазовую), получим, что ее логарифм равен сумме логарифма амплитудной характеристики и фазовой характеристики:

.

Две характеристики и , построенные в логарифмическом масштабе частот (), называются натуральными логарифмическими амплитудными и фазовыми частотными характеристиками.

В теории автоматического управления используются десятичные логарифмы. За единицу измерения принимается децибел () и рассматривают две характеристики: и , построенные в логарифмическом масштабе частот. Именно они называются логарифмическими амплитудными и логарифмическими фазовыми характеристиками соответственно.

К-во Просмотров: 498
Бесплатно скачать Реферат: Временные характеристики и функция времени. Графическое представление частотных характеристик