Реферат: Выбор оптимального варианта повышения мощности турбообводом в составе энергоблока ВВЭР-640
Рисунок 3 . Расчетная тепловая схема ПТУ ВВЭР-640 с дополнительной турбиной на обводе ЧВД.
В результате расчетов получены следующие показатели работы ПТУ на номинальном режиме:
D NЦВД = 0,019;
D NЦHД = 0,076;
D NT = 0,057;
NT = 634,4 МВт.
hБР = 35,9 %
D hБР = 0,9 %
Рисунок 4 . Процесс расширения пара в основной и обводной турбине в hs -диаграмме.
При данной схеме включения видно, что суммарная мощность ЦВД увеличилась на 1,9 %, а прирост мощности ЦНД составил только 7,6 %, что меньше предыдущего варианта схемы на 0,7 %. Эти изменения являются следствием следующих причин:
1. При включении доп. турбины на обводе ЦВД в точке включения повышается давление пара, что приводит к увеличению перепада энтальпий на ЦНД, и понижению перепада на ЦВД. Как следствие понижается мощность, вырабатываема в ЦВЦ и повышается мощность ЦНД.
2. При включении доп. турбины на обводе ЧВД точка включения находится между ЧВД и ЧСД. Следовательно, повышение давления уменьшает перепад энтальпий на ЧВД и повышает перепад на ЧСД. Суммарное изменение мощности ЧВД и ЧСД дает прирост мощности ЦВД на 1,9 %. В то же время из-за переноса точки включения перепад на ЦНД уменьшается, что уменьшает прирост мощности в этой части турбины, а изменение мощности происходит исключительно за счет увеличения расхода пара.
Анализ вариантов включения обводной турбины
Полученные в результате расчетов значения запишем в сводную таблицу:
Величина | Турбина на обводе | |
ЦВД | ЧВД | |
NДОП , МВт | 5,8 | 4,5 |
N ЦВД , МВт | 292,6 | 302,8 |
N ЦНД , МВт | 329,2 | 327,1 |
NТ , МВт | 627,6 | 634,4 |
D N ЦВД , % | -1,5 | 1,9 |
D N ЦНД , % | 8,3 | 7,6 |
D NТ , % | 4,6 | 5,7 |
h БР , % | 35,9 | 35,9 |
D h БР , % | 0,9 | 0,9 |
Из таблицы видно, что первый вариант включения доп. турбины менее экономичный, по сравнению со вторым. Учитывая меньшую стоимость изготовления и эксплуатации одновенечной турбины, следует отдать предпочтение второму варианту.
Следует отметить, что полученные результаты являются оценочными и не могут быть взяты за основу при модернизации. Для получения точных значений необходимо производить поступенный пересчет основной турбины с учетом обводной, и таким образом определять точные значения технологических параметров в каждой точке технологической схемы. В то же время необходим более тщательный расчет вспомогательной турбины с учетом уникальности используемых профилей проточной части.
Список использованной литературы
1. Ерёмин Н.Н. Анализ возможностей компенсации различия мощности (эл.) турбоустановки и реактора на АЭС с ВВЭР-640 // Выпускная работа бакалавра. – Филиал СПбГТУ в г. Сосновый Бор: кафедра управления ядерными реакторами, 2000.
2. Атомная электрическая станция нового поколения с реакторной установкой средней мощности ВВЭР-640: Проект. - СПб.: Атомэнергопроект, 1993.
3. Дейч М.Е., Филиппов Г.А., Лазарев Л.Я. Атлас профилей решеток осевых турбин. – М.: Машиностроение, 1965. – 96 с., ил.
4. Зверков В.В., Игнатенко Е.И., Волков А.П. Резервы повышения мощности действующих АЭС с ВВЭР-440. – М.: Энергоатомиздат, 1987. - 80 с., ил.
5. Иванов В.А. Режимы мощных паротурбинных установок. – Л.: Энергоатомиздат, 1986. – 284с., ил.
6. Иванов В.А.Эксплуатация АЭС: Учебник для вузов. – СПб.: Энергоатомиздат, 1994. – 384 с., ил.
7. Маргулова Т.Х. Атомные электрические станции. М.: Высшая школа, 1978.
8. Тепловые и атомные электрические станции: Справочник / Под общ. ред. В.А. Григорьева, В.М. Зорина. – В 4х книгах. – М.: Энергоатомиздат, 1989.
9. Щегляев А.В. Паровые турбины. Теория теплового процесса и конструкция турбин: Учебник для вузов. В 2х кн. - М.: Энергоатомиздат, 1993.