Реферат: Вычисление интеграла методом Ньютона-Котеса (теория и программа на Паскале)

2)Найдем значения y:

x0=0 y0=1
x1=1 y1=0.5
x2=2 y2=0.2
x3=3 y3=0.1
x4=4 y4=0.0588
x5=5 y5=0.0384
x6=6 y6=0.0270
x7=7 y7=0.02

3) Находим коэффициенты Ньютона-Котеса:

H1=H7=0.0435, H1=H6=0.2040, H2=H5=0.0760 ,H3=H4=0.1730

Подставим значения в формулу и получим:


При подсчете с помощью формулы Ньютона-Лейбница получим:

Пример 2.

Вычислить при помощи метода Ньютона-Котеса

, взяв n=5;

Вычисление:

1) Определим шаг h=(8-4)/5=0.8

2) Найдем значения y:

x0=0 y0=-2.61
x1=4.8 y1=0.42
x2=5.6 y2=4.34
x3=6.4 y3=6.35
x4=7.2 y4=4.38
x5=8 y5=-0.16

3) Находим коэффициенты Ньютона –Котеса:

H0=H5=0.065972 ;H1=H4=0.260417 ;H2=H3=0.173611 ;

4)Подставим значения в формулу и получим:

Рассмотрим частные случаи формулы Ньйтона-Котеса.

Пусть n=1 тогда

H0=H1=0.5 и конечная формула примет вид:

Тем самым в качестве частного случая нашей формулы мы получили формулу трапеций.

Взяв n=3, мы получим

. Частный случай формулы Ньютона –Котеса – формула Симпсона


Теперь произведем анализ алгоритма и рассмотрим основной принцип работы программы.

Для вычисления интеграла сначала находятся коэффициенты Ньютона-Котеса. Их нахождение осуществляется в процедуре hkoef.

Основной проблемой вычисления коэффициентов является интеграл от произведения множителей. Для его расчета необходимо:

А) посчитать коэффициенты при раскрытии скобок при q

(процедура mnogoclen)

Б) домножить их на 1/n , где n –степень при q (процедура koef)

В) подставить вместо q значение n (функция integral)

К-во Просмотров: 3839
Бесплатно скачать Реферат: Вычисление интеграла методом Ньютона-Котеса (теория и программа на Паскале)