Реферат: Вычисление координат центра тяжести плоской фигуры
Условие: Определить координаты центра тяжести сегмента параболы y2 =ax, отсекаемого прямой, х=а (рис. 2)
Решение: В данном случае поэтому
(так как сегмент симметричен относительно оси Ox)
3)
Условие: Определить координаты центра тяжести четверти эллипса (рис. 3)
полагая, что поверхностная плотность во всех точках равна 1.
Решение: По формулам (*) получаем:
4)
Условие:
Найти координаты центра тяжести дуги цепной линии .
Решение:
1Так как кривая симметрична относительно оси Oy, то ее центр тяжести лежит на оси Oy, т.е. Xc = 0. Остается найти . Имеем тогда длина дуги
Следовательно,
5)
Условие:
Пользуясь теоремой Гульдена найти координаты центра тяжести четверти круга
.
Решение:
При вращении четверти круга вокруг оси Ох получим полушар, объем которого равен
Согласно второй теореме Гульдена, Отсюда Центр тяжести четверти круга лежит на оси симметрии, т.е. на биссектрисе I координатного угла, а потому
III. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
1. Данко П.Е., Попов А.Г., Кожевникова Т.Я. «Высшая математика в упражнениях и задачах», часть 2, «Высшая школа», Москва, 1999.
2. Пискунов Н.С. «Дифференциальное и интегральное исчисления для втузов», том 2, «Наука», Москва, 1965