Реферат: Вычисление координат центра тяжести плоской фигуры
Пусть на плоскости Oxy дана система материальных точек
P1 (x1 ,y1 ); P2 (x2 ,y2 ); ... , Pn (xn ,yn )
c массами m1 ,m2 ,m3 , . . . , mn .
Произведения xi mi и yi mi называются статическими моментами массы mi относительно осей Oy и Ox.
Обозначим через xc и yc координаты центра тяжести данной системы. Тогда координаты центра тяжести описанной материальной системы определяются формулами:
Эти формулы используются при отыскании центров тяжести различных фигур и тел.
2. Центр тяжести плоской фигуры.
Пусть данная фигура, ограниченная линиями y=f1 (x), y=f2 (x), x=a, x=b, представляет собой материальную плоскую фигуру. Поверхностною плотность, то есть массу единицы площади поверхности, будем считать постоянной и равной d для всех частей фигуры.
Разобьем данную фигуру прямыми x=a, x=x1 , . . . , x=xn =b на полоски ширины Dx1, Dx2 , . . ., Dxn . Масса каждой полоски будет равна произведению ее площади на плотность d. Если каждую полоску заменить прямоугольником (рис.1) с основанием Dxi и высотой f2 (x)-f1 (x), где x, то масса полоски будет приближенно равна
(i = 1, 2, ... ,n).
Приближенно центр тяжести этой полоски будет находиться в центре соответствующего прямоугольника:
Заменяя теперь каждую полоску материальной точкой, масса которой равна массе соответствующей полоски и сосредоточена в центре тяжести этой полоски, найдем приближенное значение центра тяжести всей фигуры:
Переходя к пределу при , получим точные координаты центра тяжести данной фигуры:
Эти формулы справедливы для любой однородной (т.е. имеющей постоянную плотность во всех точках) плоской фигуры. Как видно, координаты центра тяжести не зависят от плотности d фигуры (в процессе вычисления d сократилось).
3. Координаты центра тяжести плоской фигуры
В предыдущей главе указывалось, что координаты центра тяжести системы материальных точек P1 , P2 , . . ., Pn c массами m1 , m2 , . . ., mn определяются по формулам
.
В пределе при интегральные суммы, стоящие в числителях и знаменателях дробей, перейдут в двойные интегралы, таким образом получаются точные формулы для вычисления координат центра тяжести плоской фигуры:
(*)
Эти формулы, выведенные для плоской фигуры с поверхностной плотностью 1, остаются в силе и для фигуры, имеющей любую другую, постоянную во всех точках плотность g.
Если же поверхностная плотность переменна:
то соответствующие формулы будут иметь вид
Выражения
и
называются статическими моментами плоской фигуры D относительно осей Oy и Ox.
Интеграл выражает величину массы рассматриваемой фигуры.
4. Теоремы Гульдена.
Теорема 1.
Площадь поверхности, полученной при вращении дуги плоской кривой вокруг оси, лежащей в плоскости этой кривой и не пересекающей ее, равна длине дуги кривой, умноженной на длину окружности, описанной центром тяжести дуги.
Теорема 2.
Объем тела, полученного при вращении плоской фигуры вокруг оси, не пересекающей ее и расположенной в плоскости фигуры, равен произведению площади этой фигуры на длину окружности, описанной центром тяжести фигуры.
II.Примеры.
1)
Условие: Найти координаты центра тяжести полуокружности X2 +Y2 =a2 , расположенной над осью Ox.
Решение: Определим абсциссу центра тяжести: ,
Найдем теперь ординату центра тяжести:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--