Реферат: Высоковольтные шунтирующие сопротивления
СОДЕРЖАНИЕ
I. НАЗНАЧЕНИЕ И ОБЩАЯ ХАРАКТЕРИСТИКА ШС ............ стр.2
II. КОНСТРУКЦИЯ ШС ВВ ............................... стр.3
III. СХЕМЫ ВКЛЮЧЕНИЯ ШС ............................. стр.8
IV. ПРИМЕНЕНИЕ ШС ................................... стр.13
V. ВЛИЯНИЕ ШС НА ВН НА КОНТАКТАХ .................... стр.14
ЛИТЕРАТУРА .......................................... стр.15
I. НАЗНАЧЕНИЕ И ОБЩАЯ ХАРАКТЕРИСТИКА
ШУНТИРУЮЩИХ СОПРОТИВЛЕНИЙ
Большинство современных воздушных выключателей (ВВ ) снабжено шунтирующими сопротивлениями (ШС ), т.е. сопротивлениями, подключаемыми параллельно контактам выключателей. От ШС в значительной мере зависит эффективность работы выключателей.
По назначению ШС могут быть разделены на три основные группы:
- сопротивления, предназначенные для влияния на параметры переходного восстанавливающегося напряжения на контактах выключателя при отключении коротких замыканий;
- сопротивления, предназначенные для снижения коммутационных перенапряжений;
- сопротивления, предназначенные для распределения напряжения между разрывами.
Наибольшее распространение получили сопротивления первой группы. Ими снабжаются генераторные выключатели для нейтрализации высоких частот (скоростей) восстанавливающегося напряжения и увеличения тока отключения и сетевые выключатели для этих же целей, а также выключатели для успешного отключения неудалённых коротких замыканий (ВВ 110-330 кВ ). Влияние этих сопротивлений в зависимости от их значения на процесс отключения может иметь место как до перехода тока через нуль, так и в процессе восстановления напряжения после перехода тока через нуль. Сопротивление, приходящееся на один разрыв выключателя, может изменяться от десятых долей Ома на мощных генераторных выключателях до сотен Ом на сетевых выключателях.
Поскольку проблема отключения тока через эти сопротивления становится иногда весьма сложной, в ряде случаев применяется двухступенчатое шунтирование. Как правило, в качестве сопротивлений первой группы используются линейные металлические или керамические сопротивления.
Не менее важное значение, особенно для выключателей сверхвысокого напряжения, имеют сопротивления второй группы. Их основное назначение – - ограничивать перенапряжения при отключении ненагруженных трансформаторов, реакторов, синхронных компенсаторов, а также при коммутации ненагруженных линий. В отличие от сопротивлений первой группы, вводимых в действие только при отключении, сопротивления второй группы в ряде случаев вводятся при включении (предвключаемые сопротивления). Значения сопротивлений второй группы колеблются от десятков Ом до нескольких тысяч Ом на разрыв. Применяются как линейные, так и нелинейные сопротивления.
Сопротивления третьей группы получили в современных ВВ ограниченное применение ввиду интенсивного развития служащих для той же цели делительных конденсаторов. Эти сопротивления составляют обычно несколько сотен тысяч Ом на разрыв. В главе II рассмотрим особенности конструкций сопротивлений, а затем (глава III, IV) основные схемы их подключения и некоторые специфические вопросы, связанные с влиянием ШС на процесс коммутаций выключателя.
II. КОНСТРУКЦИЯ ШУНТИРУЮЩИХ СОПРОТИВЛЕНИЙ
ВОЗДУШНЫХ ВЫКЛЮЧАТЕЛЕЙ
2.1. Общие сведения
Шунтируюшие сопротивления используются практически во всех современных воздушных выключателях, однако число используемых конструкций сопротивлений весьма ограничено. По роду установки шунтирующие сопротивления классифицируются на три группы: наружной установки, внутренней установки и для работы в средах с высокой электрической прочностью (например, в сжатом воздухе, SF6 , масле и т.п.).
По конструктивному исполнению сопротивления можно разделить на две группы: сопротивления с металлическими токоведущими элементами (круглыми или плоскими) и объёмные сопротивления (линейные или нелинейные), выполненные из специальной керамики. В таблице 1 и в таблице 2 приведены необходимые для расчётов характеристики отечественных металлических и изоляционных материалов, применяемых в конструкциях сопротивлений.
Наиболее перспективными являются конструкции безындуктивных объёмных шунтирующих сопротивлений. В мировой практике наибольшее распространение получили керамические объёмные сопротивления фирмы «Морганайт», выпуск аналогичных элементов сопротивлений освоен также российской промышленностью. Для современных линейных объёмных сопротивлений достигнута теплоёмкость в единице объёма при адиабатном нагреве до 300 Дж /см 3 , удельное объёмное сопротивление может меняться в широких пределах, от 100 до 3000 Ом . см , что позволяет получать элементы с различным сопротивлением. В России применяются в качестве объёмных сопротивлений также сопротивления из бетэла с объёмной теплоёмкостью около 100 Дж /см 3 . На базе объёмных керамических сопротивлений выпускаются также нелинейные сопротивления, меняющие своё значение в зависимости от приложенного к ним напряжения. Такие сопротивления, как отмечалось выше, весьма эффективны для снижения коммутационных перенапряжений при отключении малых индуктивных токов.
Если обозначить через i 1 и i 2 токи, протекающие через нелинейное сопротивление соответственно при напряжениях u 1 и u 2 , то справедливо соотношение
i 1 /i 2 = (u 1 /u 2 )m н
Минимальное значение m н для нелинейных сопротивлений обычно составляет 2, 8-4. Значение показателя m н для практически не зависят от температуры сопротивления.
Для иллюстрации эффективности применения нелинейных сопротивлений при отключении малых индуктивных токов на рис. приведена зависимость кратности перенапряжений от отношения срезанного тока к его амплитуде при нелинейном сопротивлении с характеристическим уравнением
i r = 0,0025. I . (u в /E )5 , где I = E /( w . L ).
Рассмотрим более подробно конструкции сопротивлений различных типов.
2.2. Сопротивления с металлическими токоведущими элементами
--> ЧИТАТЬ ПОЛНОСТЬЮ <--