Реферат: Вызов удаленных процедур (RPC)

11. Процедура обработки прерывания

12. Вычисление контрольной суммы

13. Переключение контекста в пространство пользователя

14. Выполнение серверного стаба

Динамическое связывание

Рассмотрим вопрос о том, как клиент задает месторасположение сервера. Одним из методов решения этой проблемы является непосредственное использование сетевого адреса сервера в клиентской программе. Недостаток такого подхода - его чрезвычайная негибкость: при перемещении сервера, или при увеличении числа серверов, или при изменении интерфейса во всех этих и многих других случаях необходимо перекомпилировать все программы, которые использовали жесткое задание адреса сервера. Для того, чтобы избежать всех этих проблем, в некоторых распределенных системах используется так называемое динамическое связывание.

Начальным моментом для динамического связывания является формальное определение (спецификация) сервера. Спецификация содержит имя файл-сервера, номер версии и список процедур-услуг, предоставляемых данным сервером для клиентов (рисунок 3.5). Для каждой процедуры дается описание ее параметров с указанием того, является ли данный параметр входным или выходным относительно сервера. Некоторые параметры могут быть одновременно входными и выходными - например, некоторый массив, который посылается клиентом на сервер, модифицируется там, а затем возвращается обратно клиенту (операция copy/ restore).

Рис. 3.5. Спецификация сервера RPC

Формальная спецификация сервера используется в качестве исходных данных для программы-генератора стабов, которая создает как клиентские, так и серверные стабы. Затем они помещаются в соответствующие библиотеки. Когда пользовательская (клиентская) программа вызывает любую процедуру, определенную в спецификации сервера, соответствующая стаб-процедура связывается с двоичным кодом программы. Аналогично, когда компилируется сервер, с ним связываются серверные стабы.

При запуске сервера самым первым его действием является передача своего серверного интерфейса специальной программе, называемой binder'ом. Этот процесс, известный как процесс регистрации сервера, включает передачу сервером своего имени, номера версии, уникального идентификатора и описателя местонахождения сервера. Описатель системно независим и может представлять собой IP, Ethernet, X.500 или еще какой-либо адрес. Кроме того, он может содержать и другую информацию, например, относящуюся к аутентификации.

Когда клиент вызывает одну из удаленных процедур первый раз, например, read, клиентский стаб видит, что он еще не подсоединен к серверу, и посылает сообщение binder-программе с просьбой об импорте интерфейса нужной версии нужного сервера. Если такой сервер существует, то binder передает описатель и уникальный идентификатор клиентскому стабу.

Клиентский стаб при посылке сообщения с запросом использует в качестве адреса описатель. В сообщении содержатся параметры и уникальный идентификатор, который ядро сервера использует для того, чтобы направить поступившее сообщение в нужный сервер в случае, если их несколько на этой машине.

Этот метод, заключающийся в импорте/экспорте интерфейсов, обладает высокой гибкостью. Например, может быть несколько серверов, поддерживающих один и тот же интерфейс, и клиенты распределяются по серверам случайным образом. В рамках этого метода становится возможным периодический опрос серверов, анализ их работоспособности и, в случае отказа, автоматическое отключение, что повышает общую отказоустойчивость системы. Этот метод может также поддерживать аутентификацию клиента. Например, сервер может определить, что он может быть использован только клиентами из определенного списка.

Однако у динамического связывания имеются недостатки, например, дополнительные накладные расходы (временные затраты) на экспорт и импорт интерфейсов. Величина этих затрат может быть значительна, так как многие клиентские процессы существуют короткое время, а при каждом старте процесса процедура импорта интерфейса должна быть снова выполнена. Кроме того, в больших распределенных системах может стать узким местом программа binder, а создание нескольких программ аналогичного назначения также увеличивает накладные расходы на создание и синхронизацию процессов.

Семантика RPC в случае отказов

В идеале RPC должен функционировать правильно и в случае отказов. Рассмотрим следующие классы отказов:

  1. Клиент не может определить местонахождения сервера, например, в случае отказа нужного сервера, или из-за того, что программа клиента была скомпилирована давно и использовала старую версию интерфейса сервера. В этом случае в ответ на запрос клиента поступает сообщение, содержащее код ошибки.
  2. Потерян запрос от клиента к серверу. Самое простое решение - через определенное время повторить запрос.
  3. Потеряно ответное сообщение от сервера клиенту. Этот вариант сложнее предыдущего, так как некоторые процедуры не являются идемпотентными. Идемпотентной называется процедура, запрос на выполнение которой можно повторить несколько раз, и результат при этом не изменится. Примером такой процедуры может служить чтение файла. Но вот процедура снятия некоторой суммы с банковского счета не является идемпотентной, и в случае потери ответа повторный запрос может существенно изменить состояние счета клиента. Одним из возможных решений является приведение всех процедур к идемпотентному виду. Однако на практике это не всегда удается, поэтому может быть использован другой метод - последовательная нумерация всех запросов клиентским ядром. Ядро сервера запоминает номер самого последнего запроса от каждого из клиентов, и при получении каждого запроса выполняет анализ - является ли этот запрос первичным или повторным.
  4. Сервер потерпел аварию после получения запроса. Здесь также важно свойство идемпотентности, но к сожалению не может быть применен подход с нумерацией запросов. В данном случае имеет значение, когда произошел отказ - до или после выполнения операции. Но клиентское ядро не может распознать эти ситуации, для него известно только то, что время ответа истекло. Существует три подхода к этой проблеме:
  • Ждать до тех пор, пока сервер не перезагрузится и пытаться выполнить операцию снова. Этот подход гарантирует, что RPC был выполнен до конца по крайней мере один раз, а возможно и более.
  • Сразу сообщить приложению об ошибке. Этот подход гарантирует, что RPC был выполнен не более одного раза.
  • Третий подход не гарантирует ничего. Когда сервер отказывает, клиенту не оказывается никакой поддержки. RPC может быть или не выполнен вообще, или выполнен много раз. Во всяком случае этот способ очень легко реализовать.

Ни один из этих подходов не является очень привлекательным. А идеальный вариант, который бы гарантировал ровно одно выполнение RPC, в общем случае не может быть реализован по принципиальным соображениям. Пусть, например, удаленной операцией является печать некоторого текста, которая включает загрузку буфера принтера и установку одного бита в некотором управляющем регистре принтера, в результате которой принтер стартует. Авария сервера может произойти как за микросекунду до, так и за микросекунду после установки управляющего бита. Момент сбоя целиком определяет процедуру восстановления, но клиент о моменте сбоя узнать не может. Короче говоря, возможность аварии сервера радикально меняет природу RPC и ясно отражает разницу между централизованной и распределенной системой. В первом случае крах сервера ведет к краху клиента, и восстановление невозможно. Во втором случае действия по восстановлению системы выполнить и возможно, и необходимо.

    Клиент потерпел аварию после отсылки запроса. В этом случае выполняются вычисления результатов, которых никто не ожидает. Такие вычисления называют "сиротами". Наличие сирот может вызвать различные проблемы: непроизводительные затраты процессорного времени, блокирование ресурсов, подмена ответа на текущий запрос ответом на запрос, который был выдан клиентской машиной еще до перезапуска системы.

Как поступать с сиротами? Рассмотрим 4 возможных решения.

  • Уничтожение. До того, как клиентский стаб посылает RPC-сообщение, он делает отметку в журнале, оповещая о том, что он будет сейчас делать. Журнал хранится на диске или в другой памяти, устойчивой к сбоям. После аварии система перезагружается, журнал анализируется и сироты ликвидируются. К недостаткам такого подхода относятся, во-первых, повышенные затраты, связанные с записью о каждом RPC на диск, а, во-вторых, возможная неэффективность из-за появления сирот второго поколения, порожденных RPC-вызовами, выданными сиротами первого поколения.
  • Перевоплощение . В этом случае все проблемы решаются без использования записи на диск. Метод состоит в делении времени на последовательно пронумерованные периоды. Когда клиент перезагружается, он передает широковещательное сообщение всем машинам о начале нового периода. После приема этого сообщения все удаленные вычисления ликвидируются. Конечно, если сеть сегментированная, то некоторые сироты могут и уцелеть.
  • Мягкое перевоплощение аналогично предыдущему случаю, за исключением того, что отыскиваются и уничтожаются не все удаленные вычисления, а только вычисления перезагружающегося клиента.
  • Истечение срока . Каждому запросу отводится стандартный отрезок времени Т, в течение которого он должен быть выполнен. Если запрос не выполняется за отведенное время, то выделяется дополнительный квант. Хотя это и требует дополнительной работы, но если после аварии клиента сервер ждет в течение интервала Т до перезагрузки клиента, то все сироты обязательно уничтожаются.

На практике ни один из этих подходов не желателен, более того, уничтожение сирот может усугубить ситуацию. Например, пусть сирота заблокировал один или более файлов базы данных. Если сирота будет вдруг уничтожен, то эти блокировки останутся, кроме того уничтоженные сироты могут остаться стоять в различных системных очередях, в будущем они могут вызвать выполнение новых процессов и т.п.

К-во Просмотров: 235
Бесплатно скачать Реферат: Вызов удаленных процедур (RPC)