Реферат: Взаимодействие тел и законы Ньютона
Взаимодействие тел
Примеров взаимодействия тела можно привести сколько угодно. Когда вы, находясь в лодке, начнёте за веревку подтягивать другую, то и ваша лодка обязательно продвинется вперед. Действуя на вторую лодку, вы заставляете ее действовать на вашу лодку.
Если вы ударите ногой по футбольному мячу, то немедленно ощутите обратное действие на ногу. При соударении двух бильярдных шаров изменяют свою скорость, т.е. получают ускорение оба шара. Все это проявление общего закона взаимодействия тел.
Действия тел друг на друга носят характер взаимодействия не только при непосредственном контакте тел. Положите, например, на гладкий стол два сильных магнита с разными полюсами навстречу друг другу, и вы тут же обнаружите, что начнут двигаться навстречу друг другу. Земля притягивает Луну (сила всемирного тяготения) и заставляет ее двигаться по криволинейной траектории; в свою очередь Луна также притягивают Землю (тоже сила всемирного тяготения). Хотя, естественно, в системе отсчёта, связанной с Землей, ускорение земли, вызываемое этой силой, нельзя обнаружить непосредственно, оно проявляется в виде приливов.
Выясним с помощью опыта, как связаны между собой силы взаимодействия двух тел. Грубые измерения сил можно произвести на следующих опытах:
1 опыт . Возьмем два динамометра, зацепим друг за друга их крючки, и взявшись за кольца, будем растягивать их, следя за показаниями, обоих динамометров.
Мы увидим, что при любых растяжениях показания обоих динамометров будут одинаковы; значит, сила, с которой первый динамометр действует на второй, равна силе, с которой второй динамометр действует на первый.
2 опыт. Возьмем достаточно сильный магнит и железный брусок, и положим их на катки, чтобы уменьшить трение о стол. К магниту и бруску прикрепим одинаковые мягкие пружины, зацепленными другими концами на столе. Магнит и брусок притянутся друг к другу и растянут пружины.
Опыт показывает, что к моменту прекращения движения пружины оказываются растянутыми одинаково. Это означает, что на оба тела со стороны пружин действуют одинаковые по модулю и противоположные по направлению силы.
Так как магнит покоится, то сила равна по модулю и противоположна по направлению силе, с которой действует на него брусок.
Точно также равны по модулю и противоположны по направлению силы, действующие на брусок со стороны магнита и пружины.
Опыт показывает, силы взаимодействия между двумя телами равны по модулю и противоположны по направлению и в тех случаях, когда тела движутся.
3 опыт. На двух тележках, которые могут катиться по рельсам, стоят два человека А и В. Они держат в руках концы веревки. Легко обнаружить, что независимо от того, кто натягивает веревку, А или В или оба вместе, тележки всегда приходят в движение одновременно и притом в противоположных направлениях. Измеряя ускорения тележек, можно убедиться, что ускорения обратно пропорциональны массам каждой из тележек (вместе с человеком). Отсюда следует, что силы, действующие на тележки, равны по модулю.
Первый закон Ньютона . Инерциальные системы отсчета
В качестве первого закона динамики Ньютон принял закон, установленный еще Галилеем: материальная точка сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не выведет ее из этого состояния.
Первый закон Ньютона показывает, что покоя или равномерного прямолинейного движения не требует для своего поддержания каких либо внешних воздействий. В этом проявляется особое динамическое свойство тел, называемое их инертностью .
Соответственно первыйзакон Ньютона называют законом инерции, а движение тела в отсутствии воздействий со стороны других тел – движением по инерции.
Механическое движение относительно: его характер для одного и того же тела может быть различным в разных системах отсчета, движущихся друг относительно друга. Например, космонавт, находящийся на борту искусственного спутника Земли, неподвижен в системе отсчета, связанной со спутником. В то же время по отношению к Земле он движется вместе со спутником по эллиптической орбите, т.е. не равномерно и не прямолинейно.
Естественно поэтому, что первый закон Ньютона должен выполняться не во всякой системе отсчета. Например, шар, лежащий на гладком полу каюты корабля, который идет прямолинейно и равномерно, может прийти в движение по полу без всякого воздействия на него со стороны каких-либо тел. Для этого достаточно, чтобы скорость корабля начала изменяться.
Система отсчета, по отношению к которой материальная точка, свободная от внешних воздействий, покоится или движется равномерно и прямолинейно, называется инерциальной системой отсчета. Содержание первого закона ржание первого закона Ньютона сводится по существу к двум утверждениям: во первых, что все тела обладают свойством инертности и, во вторых, что существуют инерциальные системы отсчета.
Любые две инерциальные системы отсчета могут двигаться друг относительно друга только поступательно и притом равномерно и прямолинейно. Экспериментально установлено, что практически инерциальна гелиоцентрическая система отсчета, начало координат которой находится в центре масс Солнечной системы (приближенно – в центре Солнца), а оси проведены в направлении трех удаленных звезд, выбранных, например, так, чтобы оси координат были взаимно перпендикулярны.
Лабораторная система отсчета, оси координат которой жестко связаны с Землей, не инерциальна главным образом из-за суточного вращения Земли. Однако Земля вращается столь медленно, что максимальное нормальное ускорение точек ее поверхности в суточном вращении не превосходит 0,034м/.поэтому в большинстве практических задач лабораторную систему отсчета можно приближенно считать инерциальной.
Инерциальные системы отсчета играют особую роль не только в механике, но также и во всех других разделах физики. Это связано с тем, что, согласно принципу относительности Эйнштейна, математическое выражение любого физического закона должно иметь один и тот же вид во всех инерциальных системах отсчета.
Сила
Силой называется векторная величина, являющаяся мерой механического действие на рассматриваемое тело со стороны других тел. Механическое взаимодействие может осуществляться как между непосредственно контактирующими телами (например, при трении, при давлении тел друг на друга), так и между удаленными телами. Особая форма материи, связывающая частицы вещества в единые системы и передающая с конечной скоростью действия одних частиц на другие, называются физическим полем, или просто полем.
Взаимодействие между удаленными телами осуществляется посредством создаваемых ими гравитационных и электромагнитных полей (например, притяжении планет к Солнцу, взаимодействие заряженных тел, проводников с током и т.п.). Механическое действие на данное тело со стороны других тел проявляется двояко. Оно способно вызывать, во-первых, изменение состояния механического движения рассматриваемого тела, а во-вторых, - его деформацию. Оба эти проявления действия силы могут служить основой для измерения сил. Например, измерения сил с помощью пружинного динамометра основанного на законе Гука для продольного растяжения. пользуясь понятием силы в механике обычно говорят о движении и деформации тела под действием приложенных к нему сил.
При этом, конечно, каждой силе всегда соответствует некоторое тело, действующее на рассматриваемое с этой силой.
Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения. Прямая, вдоль которой направлена сила, называется линией действия силы.
Поле, действующее на материальную точку с силой F , называется стационарным полем , если оно не изменяется с течением времени t , т.е. если в любой точке поля сила F не зависит явно от времени:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--