Реферат: Загальні принципи моделювання
Модель - це представлення об'єкта, системи або поняття в деякій формі, відмінній від реального існування. Модель є засобом, що допомагає в поясненні, розумінні або удосконалюванні системи. Модель може бути точною копією об'єкта (хоча й в іншому масштабі і з іншого матеріалу) або відображати деякі характерні властивості об'єкта в абстрактній формі. Тому модель - це інструмент для прогнозування наслідків при дії вхідних сигналів на об'єкт, який підвищує ефективність суджень і інтуїції фахівців.
Всі моделі - спрощені уявлення реального світу або абстракції. Звичайно відкидають велику частину реальних характеристик досліджуваного об'єкта і вибирають ті його особливості, що ідеалізують варіант реальної події.
Подібність моделі з об'єктом характеризується ступенем ізоморфізму. Для того щоб бути цілком ізоморфною, модель повинна задовольняти дві умови: по-перше, повинна існувати взаємно однозначна відповідність між елементами моделі й елементами, що представляють об'єкт; по-друге, повинні бути збережені точні співвідношення (взаємодії) між елементами.
Більшість моделей лише гомоморфні, тобто подібні за формою. Причому є лише поверхнева подоба між різними групами елементів моделі й об'єкта. Гомоморфні моделі - результат спрощення й абстракції.
Для розробки гомоморфної моделі систему, звичайно, розбивають на більш дрібні частини, щоб легше було зробити необхідний аналіз. Але слід при цьому знайти складові частини, що не залежать у першому наближенні один від одного. З такого роду аналізом пов'язаний процес спрощення реальної системи (зневажання несуттєвими деталями, прийняття допущення про більш прості співвідношення). Наприклад, допускаємо, що між змінними є лінійна залежність або що резистори і конденсатори не змінюють своїх параметрів. При керуванні часто допускають, що процеси або детерміновані, або їхнє поводження описується відомими імовірнісними функціями розподілу.
Абстракція зосереджує в собі істотні риси поводження об'єкта, але необов’язково в тій же формі і настільки детально, як в об'єкті. Більшість моделей - абстракція.
Після аналізу частин системи здійснюють їхній синтез, що повинно робитися дуже коректно, з обліком усіх їхніх взаємозв'язків. Основою успішної методики моделювання повинно бути ретельне відпрацювання моделі. Почавши з простої моделі, звичайно просуваються до більш досконалої її форми, яка віддзеркалює систему значно точніше. Між процесом модифікації моделі і процесом обробки даних є безперервна взаємодія.
Процес моделювання полягає в наступному: загальна задача дослідження системи розділяється на ряд більш простих; чітко формулюються цілі моделювання; підшукується аналогія; розглядається спеціальний чисельний приклад, що відповідає даній задачі; вибираються певні позначення; записуються очевидні співвідношення. Якщо отримана модель піддається математичному опису, її розширюють, у противному випадку - спрощують.
Ось чому конструювання моделі не зводиться до одного базового варіанта. Увесь час виникають нові задачі з метою покращення відповідності моделі й об'єкта.
1.2 Вимоги до моделі. Функції моделі
Найбільш загальні вимоги до моделі можуть бути сформульовані таким чином: модель повинна бути простою і зрозумілою користувачу, цілеспрямованою, гарантованою від абсурдних результатів, зручною в керуванні і спілкуванні, повною з погляду розв'язання головних завдань, адаптивною, що дозволяє легко переходити до інших модифікацій або обновляти дані, дозволяти поступові зміни, тобто, будучи спочатку простою, вона може у взаємодії з користувачем ставати усе складнішою.
Ідея уявлення системи за допомогою моделі носить настільки загальний характер, що дати повну класифікацію усіх функцій моделі важко. Розглянемо п'ять випадків, що найбільш поширені як вихідний матеріал для визначення функцій моделі.
1. Моделі можуть допомогти нам упорядкувати нечіткі або суперечливі поняття. Наприклад, представивши роботи з проектування складних систем у вигляді мережного графіка, можна вирішити, які кроки й у якій послідовності необхідно починати. Модель дозволяє з'ясувати взаємозалежності, тимчасові співвідношення, необхідні ресурси й ін.
2. Усі мови, в основі яких лежить слово, будуть неточними, коли справа доходить до складних понять і описів. Правильно побудовані моделі дозволяють усунути ці неточності, надаючи в наше розпорядження більш успішні способи спілкування. Перевага моделі перед словесними описами - у стислості і точності уявлення заданої ситуації.
3. Моделі часто застосовуються як чудовий засіб навчання осіб, які повинні вміти справлятися з усілякими випадками поводження систем, включаючи виникнення критичних ситуацій виникнення критичної ситуації (моделі космічних кораблів, тренажери для навчання водіїв і ін.). Одним із важливих застосувань моделей є прогнозування поводження об'єктів, що моделюються. Наприклад, будувати надзвуковий реактивний літак для проведення експериментів економічно недоцільно, а для завбачення його льотних характеристик використовують засоби моделювання (наприклад, випробування конструкцій в аеродинамічній трубі).
4. Моделі дозволяють робити контрольовані експерименти в ситуаціях, де експериментування на реальних об'єктах економічно недоцільно або практично неможливо. Звичайно, варіюють кілька параметрів системи, підтримуючи інші незмінними, і спостерігають результати експерименту. Часто, моделюючи систему, можна довідатися значно більше про її внутрішні взаємозв'язки, ніж оперуючи з реальною системою. Це стає можливим тому, що ми можемо контролювати поведінку моделі, легко змінювати її структуру та параметри. Таким чином, модель може служити для досягнення двох цілей: описової, якщо модель служить для пояснення і кращого розуміння об'єкта, і керівної, коли модель дозволяє передбачити або відтворити характеристики об'єкта, що визначають її поведінку. Модель керівного типу, що наказує, може бути описовою, але не навпаки. Тому й різний ступінь корисності моделей, що застосовують в техніці й у соціальних науках. Це значною мірою залежить від методів і засобів, що використовувалися при побудові моделей, і в розходженні кінцевих цілей, що при цьому ставилися. У техніці моделі служать як допоміжні засоби для створення нових або більш досконалих систем. А в соціальних науках моделі пояснюють існуючі системи. Модель, придатна для розробки системи, повинна також пояснювати її.
1.3 Класифікація моделей
Моделі можна класифікувати різними способами, але жоден із них не є вичерпним. Зазначимо деякі типові групи моделей, що можуть бути покладені в основу системи класифікації: статистичні і динамічні; стохастичні і детерміновані; дискретні і неперевні; натурні, аналогові, символічні. Зручно представити моделі у вигляді безперервного спектра (рис.1.1). Фізичні моделі часто називають натурними, тому що зовні вони нагадують досліджувану систему. Вони можуть бути в зменшеному масштабі (модель сонячної системи) або в збільшеному (модель атома), тоді вони називаються масштабуючі моделі.
Аналогові моделі - це моделі, у яких властивість реального об'єкта представлена іншою властивістю, аналогічного по поведінці об'єкта. Аналогова ОМ, у якій зміна напруги може відображати зміну будь-якої фізичної величини у деякій системі, являє приклад подібної моделі. Графік подає аналогову модель іншого типу. Тут відстань відображає характеристики об'єкта. Графік показує співвідношення між різними кількісними характеристиками і може прогнозувати, як будуть змінюватися одні величини при зміні інших.
Рис.1.1.
Графічні вирішення можливі також для визначення ігрових задач, що іноді використовуються разом із математичними моделями, причому одна з цих моделей подає інформацію для іншої. Різного роду схеми також є аналоговими моделями (структурна схема якоїсь організації).
У тих випадках, коли у взаємодію вступають люди і машинні компоненти, моделювання називають іграми (управлінськими, військовими й ін.).
До математичних моделей відносяться ті, у яких для представлення процесу використовують символи, а не фізичні властивості. Математичні моделі - сукупність математичних об'єктів і відношень між ними, що адекватно відображає деякі властивості об'єкта.
Розглянемо більш докладно класифікацію математичних моделей. Класифікація відбувається за кількома принципами.
1. Залежно від характеру відображуваних властивостей об’єкта - функціональні і структурні. Функціональні відображають процеси функціонування об'єкта. Вони мають частіше усього форму системи рівнянь. Структурні можуть мати форму матриць, графів, списків векторів і виражати взаємне розташування елементів у просторі. Ці моделі звичайно використовують у випадках, коли задачі структурного синтезу вдається ставити і вирішувати абстрагуючись від
фізичних процесів в об'єкті. Вони відбивають структурні властивості об'єкта.
2. За способами одержання функціональних математичних моделей - теоретичні й формальні. Теоретичні одержують на основі вивчення фізичних закономірностей. Структура рівнянь і параметри моделей мають певне фізичне тлумачення. Формальні одержують на основі прояву властивостей об'єкта, що моделюється в зовнішньому середовищі, тобто розгляд об'єкта як кібернетичної «чорної скриньки». Теоретичні моделі більш універсальні і справедливі для широких діапазонів зміни зовнішніх параметрів. Формальні більш точні в діапазоні, у якому робилися виміри.
3. Залежно від лінійності і нелінійності рівнянь - лінійні і нелінійні.
4. Залежно від множини значень змінних неперервні і дискретні.
5. За формою зв'язків між вихідними, внутрішніми і зовнішніми змінними - алгоритмічні й аналітичні.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--