Реферат: Загальні властивості неперервних функцій
що й треба було довести.
Теорема 7 (про найменше і найбільше значення ). Якщо функція неперервна в обмеженій замкненій області D, то вона обмежена, тобто всі її значення містяться між двома скінченними числами та і М:
m ≤ f(X) ≤ M.
Числа т і М називаються найменшим і найбільшим значеннями функції. При цьому в області D знайдеться принаймні одна точка Х1 D, в якій функція f(X1 ) набуває найменшого значення f(Х1 ) = т ; і принаймні одна точка Х2 D, в якій функція набуває найбільшого значення f(Х2 ) = М.
Сформулюємо теорему 7 для функції однієї змінної:
якщо функція у = f(х) неперервна на [а, b], то вона обмежена, тобто всі її значення містяться між. двома скінченними числами т і М, які називаються найменшим і найбільшим значеннями функції на сегменті [а, b].
m ≤ f(x) ≤ M.
На рис. зображена неперервна на [а, b] функція, у якої є точки і такі, що
і одна точка х2 , в якій f(х2 ) = М.
Теорема 8 (Кантора). Якщо функція неперервна в обмеженій замкнутій області D, то вона рівномірно неперервна в D.
Теорему наводимо без доведення.