Реферат: Законы Менделя 2

aabb

При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в I делении мейоза ген А может попасть в одну гамету с геном В или с геном Ь. Точно так же ген а может оказаться в одной гамете с геном В или с геном Ь. Поэтому у гибрида образуются четыре типа гамет: АВ, Ав, аВ, ав . Во время оплодотворения каждая из четырех типов гамет одного организма слу­чайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Пеннета, в которой по горизонтали выписываются гаметы одного родителя, по вертикали — гаметы другого родителя. В квадратики вносятся генотипы зигот, образующиеся при слиянии гамет.

Легко подсчитать, что по фенотипу потомство делит­ся на 4 группы: 9 желтых гладких, 3 желтых морщини­стых, 3 зеленых гладких, 1 желтая морщинистая (9:3:3:1). Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1. Это можно выразить алгебраически как квадрат двучлена

(3+1)² = 3² +2·3+1² или 9+3+3+1

Таким образом, при дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещива­нии, т. е. независимо от другой пары признаков.

При оплодотворении гаметы соединяются по прави­лам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают раз­личные комбинации генов. Теперь можно сформулировать третий закон Менде­ля: при скрещивании двух гомозиготных особей, отлича­ ющихся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Законы Менделя служат основой для анализа рас­щепления в более сложных случаях: при различиях осо­бей по трем, четырем парам признаков и более.

Условия соблюдения законов наследования Менделя

Законы открытые Грегором Менделем применимы в генетике не всегда. Существуют многие условия соблюдения законов Менделя. Для таких случаев существуют другие законы (например: закон Моргана), или объяснения.

Сформулируем основные условия соблюдения законов наследования.

Для соблюдения закона единообразия гибридов первого поколения необходимо, чтобы:

· родительские организмы были гомозиготными;

· гены разных аллелей находились в различных хромосомах, а не в одной (иначе может произойти явление «сцепленного наследования»).

Закон расщепления будет соблюдаться, если

· у гибридов наследственные факторы сохраняются в неизменном виде;

Закон независимого распределения генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь слу­чае.

· если пары аллельных генов расположены в разных парах гомологичных хромосом.

Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (100%-ой частотой проявления анализируемого признака; 100%-ая пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью; постоянная экспрессивность подразумевает, что фенотипическая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.

Заключение.

Законы Грегора Менделя, в настоящее время, имеют широкое применение в селекции растений, животных и микроорганизмов, в медицине, генной инженерии и многих других отраслях жизни человека.Также Они применяются в решении задач по генетике.

Важно заметить, что Мендель формулировал законы и делал выводы во времена, когда ни о ДНК, ни о генах и хромосомах было ни чего не известно. Однако он оказался совершенно прав, и хотя и не сразу, но его теории были признаны и взяты за основу развивающейся науки – генетики.

Менделевская теория наследственности, т.е. совокупность представлений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином. В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. Поэтому характер признака потомка должен прямо зависеть от свойств родителя. Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Таким образом, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики – науки, изучающей два основных свойства организма – наследственность и изменчивость. Ему удалось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

К-во Просмотров: 468
Бесплатно скачать Реферат: Законы Менделя 2