Реферат: Занимательные опыты по физике

Последняя в свою очередь подразделяется на теорию упругости, гидромеханику, аэромеханику, газовую механику и другие.

Термином «теоретическая механика» обычно обозначают часть механики, занимающуюся исследованием наиболее общих законов движения, формулировкой её общих положений и теорем, а также приложением методов механики к изучению движения материальной точки, системы конечного числа материальных точек и абсолютно твердого тела.

В каждом из этих разделов, прежде всего, выделяется статика, объединяющая вопросы, относящиеся к исследованию условий равновесия сил. Различают статику твердого тела и статику сплошной среды: статику упругого тела, гидростатику и аэростатику. Движение тел в отвлечении от взаимодействия между ними изучает кинематика. Существенная особенность кинематики сплошных сред заключается в необходимости определить для каждого момента времени распределение в пространстве перемещений и скоростей. Предметом динамики являются механические движения материальных тел в связи с их взаимодействиями.

Существенные применения механики относятся к области техники. Задачи, выдвигаемые техникой перед механикой, весьма разнообразны; это – вопросы движения машин и механизмов, механика транспортных средств на суше, на море и в воздухе, строительной механики, разнообразных отделов технологии и многие другие. В связи с необходимостью удовлетворения запросов техники из механики выделились специальные технические науки. Кинематика механизмов, динамика машин, теория гироскопов, внешняя баллистика представляют технические науки, использующие методы абсолютно твердого тела. Сопротивление материалов и гидравлика, имеющие с теорией упругости и гидродинамикой общие основы, вырабатывают для практики методы расчёта, корректируемые экспериментальными данными. Все разделы механики развивались и продолжают развиваться в тесной связи с запросами практики, в ходе разрешения задач техники.

Механика как раздел физики развивался в тесной взаимосвязи с другими её разделами – с оптикой, термодинамикой и другими. Основы так называемой классической механики были обобщены в начале XX в. в связи с открытием физических полей и законов движения микрочастиц. Содержание механики быстродвижущихся частиц и систем (со скоростями порядка скорости света) изложены в теории относительности, а механика микродвижений – в квантовой механике.

В основе механики лежат следующие законы Ньютона. П е р в ы й з а к о н, или закон инерции, характеризует движение тел в условиях изолированности от других тел, либо при уравновешенности внешних воздействий. Закон этот гласит: всякое тело сохраняет состояние покоя или равномерного и прямолинейного движения, пока приложенные силы не заставят его изменить это состояние. Первый закон может служить для определения инерциальных систем отсчета. В т о р о й з а к о н, устанавливающий количественную связь между приложенной к точке силой и вызываемым этой силой изменением количества движения, гласит: изменение движения происходит пропорционально приложенной силе и происходит в направлении линии действия этой силы. Согласно этому закону, ускорение материальной точки пропорционально приложенной к ней силе: данная сила F вызывает тем меньшее ускорение а тела, чем больше его инертность. Мерой инертности служит масса. По второму закону Ньютона сила пропорциональна произведению массы материальной точки на её ускорение; при надлежащем выборе единицы силы последняя может быть выражена произведением массы точки m на ускорение а:

F = ma .

Это векторное равенство представляет основное уравнение динамики материальной точки. Т р е т и й з а к о н Ньютона гласит: действию всегда соответствует равное ему и противоположно направленное противодействие, т. е. действие двух тел друг на друга всегда равны и направлены по одной прямой в противоположных направлениях. В то время как первые два закона Ньютона относятся к одной материальной точке, третий закон является основным для системы точек. Наряду с этими тремя основными законами динамики имеет место закон независимости действия сил, который формулируется так: если на материальную точку действует несколько сил, то ускорение точки складывается из тех ускорений, которые точка имела бы под действием каждой силы в отдельности.

Но любое изучение и преподавание физики не возможно без проведения экспериментов.

Эксперимент имеет большое значение для преподавания учащимся физических законов и явлений. Значение физического эксперимента непрерывно возрастает в связи с небывалым развитием физики. Гигантское развитее науки требует совершенствования методики преподавания физики. Эта задача приобретает особую важность в связи с перестройкой школы.

Осуществление двух видов школьного эксперимента: демонстрации опытов и проведение лабораторных работ – позволяет успешно решать задачу физики с техникой. Этим и объясняется огромный интерес, проявляемый учителями физики к постановке школьного физического эксперимента.

Использование демонстрационного эксперимента, обсуждение со школьниками особенностей его постановки и наблюдаемых результатов. Проведение лабораторного эксперимента и решение расчетных задач не предусматриваются. Для проверки усвоения рекомендуются контрольные работы, ответы на качественные вопросы, написание рефератов с последующим анализом их содержания на уроках.


2.Виды и роль эксперимента в обучающем процессе.

Демонстрационный эксперимент является одной из составляющих учебного физического эксперимента и представляет собой воспроизведение физических явлений учителем на демонстрационном столе с помощью специальных приборов. Он относится к иллюстративным эмпирическим методам обучения. Роль демонстрационного эксперимента в обучении определяется той ролью, которую эксперимент играет в физике-науке как источник знаний и критерий их истинности, и его возможностями для организации учебно-познавательной деятельности учащихся.

Значение демонстрационного физического эксперимента заключается в том, что:

-учащиеся знакомятся с экспериментальным методом познания в физике, с ролью эксперимента в физических исследованиях (в итоге у них формируется научное мировоззрение);

-у учащихся формируются некоторые экспериментальные умения: наблюдать явления, выдвигать гипотезы, планировать эксперимент, анализировать результаты, устанавливать зависимости между величинами, делать выводы и т.п.

Демонстрационный эксперимент, являясь средством наглядности, способствует организации восприятия учащимися учебного материала, его пониманию и запоминанию; позволяет осуществить политехническое обучение учащихся; способствует повышению интереса к изучению физике и созданию мотивации учения. Но при проведении учителем демонстрационного эксперимента учащиеся только пассивно наблюдают за опытом, проводимым учителем, сами при этом ничего не делают собственными руками. Следовательно, необходимо наличие самостоятельного эксперимента учащихся по физике.

Обучение физике нельзя представить только в виде теоретических занятий, даже если учащимся на занятиях показываются демонстрационные физические опыты. Ко всем видам чувственного восприятия надо обязательно добавить на занятиях “работу руками”. Это достигается при выполнении учащимися лабораторного физического эксперимента, когда они сами собирают установки, проводят измерения физических величин, выполняют опыты. Лабораторные занятия вызывают у учащихся очень большой интерес, что вполне естественно, так как при этом происходит познание учеником окружающего мира на основе собственного опыта и собственных ощущений.

Значение лабораторных занятий по физике заключается в том, что у учащихся формируются представления о роли и месте эксперимента в познании. При выполнении опытов у учащихся формируются экспериментальные умения, которые включают в себя как интеллектуальные умения, так и практические. К первой группе относятся умения: определять цель эксперимента, выдвигать гипотезы, подбирать приборы, планировать эксперимент, вычислять погрешности, анализировать результаты, оформлять отчет о проделанной работе. Ко второй группе относятся умения: собирать экспериментальную установку, наблюдать, измерять, экспериментировать.

Кроме того, значение лабораторного эксперимента заключается в том, что при его выполнении у учащихся вырабатываются такие важные личностные качества, как аккуратность в работе приборами; соблюдение чистоты и порядка на рабочем месте, в записях, которые делаются во время эксперимента, организованность, настойчивость в получении результата. У них формируется определенная культура умственного и физического труда.

Фронтальные лабораторные работы - это такой вид практических работ, когда все учащиеся класса одновременно выполняют однотипный эксперимент, используя одинаковое оборудование. Фронтальные лабораторные работы выполняются чаще всего группой учащихся, состоящей из двух человек, иногда имеется возможность организовать индивидуальную работу. Соответственно в кабинете должно быть 15-20 комплектов приборов для фронтальных лабораторных работ. Общее количество таких приборов будет составлять около тысячи штук. Названия фронтальных лабораторных работ приводятся в учебных программах. Их достаточно много, они предусмотрены практически по каждой теме курса физики. Перед проведением работы учитель выявляет подготовленность учащихся к сознательному выполнению работы, определяет вместе с ними ее цель, обсуждает ход выполнения работы, правила работы с приборами, методы вычисления погрешностей измерений. Фронтальные лабораторные работы не очень сложны по содержанию, тесно связаны хронологически с изучаемым материалом и рассчитаны, как правило, на один урок. Описания лабораторных работ можно найти в школьных учебниках по физике.

Физический практикум проводится с целью повторения, углубления, расширения и обобщения полученных знаний из разных тем курса физики; развития и совершенствования у учащихся экспериментальных умений путем использования более сложного оборудования, более сложного эксперимента; формирования у них самостоятельности при решении задач, связанных с экспериментом. Физический практикум не связан по времени с изучаемым материалом, он проводится, как правило, в конце учебного года, иногда - в конце первого и второго полугодий и включает серию опытов по той или иной теме. Работы физического практикума учащиеся выполняют в группе из 2-4 человек на различном оборудовании; на следующих занятиях происходит смена работ, что делается по специально составленному графику. Составляя график, учитывают число учащихся в классе, число работ практикума, наличие оборудования. На каждую работу физического практикума отводятся два учебных часа, что требует введения в расписание сдвоенных уроков по физике. Это представляет затруднения. По этой причине и из-за недостатка необходимого оборудования практикуют одночасовые работы физического практикума. Следует отметить, что предпочтительными являются двухчасовые работы, поскольку работы практикума сложнее, чем фронтальные лабораторные работы, выполняются они на более сложном оборудовании, причем доля самостоятельного участия учеников значительно больше, чем в случае фронтальных лабораторных работ. К каждой работе учитель должен составить инструкцию, которая должна содержать: название, цель, список приборов и оборудования, краткую теорию, описание неизвестных учащимся приборов, план выполнения работы. После проведения работы учащиеся должны сдать отчет, который должен содержать: название работы, цель работы, список приборов, схему или рисунок установки, план выполнения работы, таблицу результатов, формулы, по которым вычислялись значения величин, вычисления погрешностей измерений, выводы. При оценке работы учащихся в практикуме следует учитывать их подготовку к работе, отчет о работе, уровень сформированности умений, понимание теоретического материала, используемых методов экспериментального исследования.

3. Занимательные опыты по физике

Но опыты в физике могу не только иллюстрировать различные физические процессы но и стимулировать познавательную активность и желание учиться. Так, например некоторые опыты предназначенные для проведения в школе на уроках по механике.

Инерция.

Интереснейшим подтверждением существования инерции служит обыкновенный волчок. Каждая частица волчка движется по окружности в плоскости, перпендикулярной оси вращения. По закону инерции частица в каждый момент времени стремится сойти с окружности на прямую линию, касательную к окружности. Но всякая касательная расположена в той же плоскости, что и сама окружность; поэтому каждая частица стремится двигаться так, чтобы все время оставаться в плоскости, перпендикулярной к оси вращения. Отсюда следует, что все плоскости в волчке, перпендикулярны к оси вращения, стремятся сохранить свое положение в пространстве, а поэтому и общий перпендикуляр к ним, т.е. сама ось вращения, также стремится сохранить свое равновесие, волчок как бы сопротивляется попытке его опрокинуть. Чем массивнее волчок и чем быстрее он вращается, тем упорнее противодействует он опрокидыванию.

Так же в лабораторных условиях можно проделать следующий эксперимент.

· Возьмем центробежную машину и укрепим на ней диск(сирену дисковую). На край диска поставьте свечу которую накройте коническим сосудом для демонстрации гидростатического парадокса. Сосуд закрепите на диске проволокой. Почему при вращении диска пламя свечи отклоняется от оси вращения?

Ответ: холодный, болие плотный воздух удаляется от оси вращения, а теплый, менее плотный, приближается, чем и объясняется отклонение пламени.

Сила тяжести давления

Силу тяжести с которой тела притягиваются к Земле, нужно отличать от веса тела. Понятие веса широко используется в повседневной жизни.

Весом тела называют силу, с которой тело вследствие его притяжения к Земле действует на опору или подвес. При этом предполагается, что тело неподвижно относительно опоры или подвеса. Пусть тело лежит на неподвижном относительно Земли горизонтальном столе. Систему отсчета, связанную с Землей, будем считать инерциальной.

К-во Просмотров: 775
Бесплатно скачать Реферат: Занимательные опыты по физике