Реферат: Защита информации. Криптография

Электронная подпись позволяет проверять целостность данных, но не обеспечивает их конфиденциальность. Электронная подпись добавляется к сообщению и может шифроваться вместе с ним при необходимости сохранения данных в тайне. Добавление временных меток к электронной подписи позволяет обеспечить ограниченную форму контроля участников взаимодействия.

Таблица № 6.

Тип Комментарии
DSA (Digital
Signature Authorization)

Алгоритм с использованием открытого ключа для создания электронной подписи, но не для шифрования.

Секретное создание хэш-значения и публичная проверка ее - только один человек может создать хэш-значение сообщения, но любой может проверить ее корректность.

Основан на вычислительной сложности взятия логарифмов в конечных полях.

RSA

Запатентованная RSA электронная подпись, которая позволяет проверить целостность сообщения и личность лица, создавшего электронную подпись.

Отправитель создает хэш-функцию сообщения, а затем шифрует ее с использованием своего секретного ключа. Получатель использует открытый ключ отправителя для расшифровки хэша, сам рассчитывает хэш для сообщения, и сравнивает эти два хэша.

MAC (код
аутентификации сообщения)
Электронная подпись, использующая схемы хэширования, аналогичные MD или SHA, но хэш-значение вычисляется с использованием как данных сообщения, так и секретного ключа.
DTS (служба
электронных временных
меток)
Выдает пользователям временные метки, связанные с данными документа

1.6. Стойкость шифра.

Способность шифра противостоять всевозможным атакам на него называют стойкостью шифра. Под атакой на шифр понимают попытку вскрытия этого шифра. Понятие стойкости шифра является центральным для криптографии. Хотя качественно понять его довольно легко, но получение строгих доказуемых оценок стойкости для каждого конкретного шифра - проблема нерешенная. Это объясняется тем, что до сих пор нет необходимых для решения такой проблемы математических результатов. Поэтому стойкость конкретного шифра оценивается только путем всевозможных попыток его вскрытия и зависит от квалификации криптоаналитиков, атакующих шифр. Такую процедуру иногда называют проверкой стойкости. Важным подготовительным этапом для проверки стойкости шифра является продумывание различных предполагаемых возможностей, с помощью которых противник может атаковать шифр. Появление таких возможностей у противника обычно не зависит от криптографии, это является некоторой внешней подсказкой и существенно влияет на стойкость шифра. Поэтому оценки стойкости шифра всегда содержат те предположения о целях и возможностях противника, в условиях которых эти оценки получены. Прежде всего, как это уже отмечалось выше, обычно считается, что противник знает сам шифр и имеет возможности для его предварительного изучения. Противник также знает некоторые характеристики открытых текстов, например, общую тематику сообщений, их стиль, некоторые стандарты, форматы и т.д.

Из более специфических приведем еще три примера возможностей противника:

· противник может перехватывать все шифрованные сообщения, но не имеет соответствующих им открытых текстов;

· противник может перехватывать все шифрованный сообщения и добывать соответствующие им открытые тексты;

· противник имеет доступ к шифру (но не к ключам!) и поэтому может зашифровывать и дешифровывать любую информацию;

Существуют различные криптографические системы защиты, которые мы можем разделить на две группы: c использованием ключа и без него. Криптосистемы без применения ключа в совремом мире не используються т.к. очень дорогостоющие и ненадёжные.

Были расмотренны основные методологии: семметричная и асиметричная. Обе методологии используют ключ (сменный элемент шифра).

Симметричные и асиметричные алгоритмы, описанные выше, сведены в таблицу, из которой можно понять какие алгоритмы наиболее подходят к той или иной задаче.

Остальная информация пердставленная во второй главе очень разнообразна. На её основе сложно сделать вывод, какие алгоритмы хеш-функций, механизмов аутетификации и электронных подписей наиболее продвинутые, все они в разной ситуации могут показать себя с лучшей стороны.

На протяжении многих веков среди специалистов не утихали споры о стойкости шифров и о возможности построения абсолютно стойкого шифра.

2 Квантовая криптография.

Один из надёжных способов сохранить в тайне телефонные переговоры или передаваемую по компьютерным сетям связи информацию – это использование квантовой криптографии.

Идея использовать для целей защиты информации природу объектов микромира - квантов света (фотонов), поведение которых подчиняется законам квантовой физики, стала наиболее актуальной.

Наибольшее практическое применение квантовой криптографии находит сегодня в сфере защиты информации, передаваемой по волоконно-оптическим линиям связи. Это объясняется тем, что оптические волокна ВОЛС позволяют обеспечить передачу фотонов на большие расстояния с минимальными искажениями. В качестве источников фотонов применяются лазерные диоды передающих модулей ВОЛС; далее происходит существенное ослабление мощности светового сигнала – до уровня, когда среднее число фотонов на один импульс становится много меньше единицы. Системы передачи информации по ВОЛС, в приемном модуле которых применяются лавинные фотодиоды в режиме счета фотонов, называются квантовыми оптическими каналами связи (КОКС).

Вследствие малой энергетики сигналов скорости передачи информации в КОКС по сравнению с возможностями современных ВОЛС не слишком высоки (от килобит до мегабит в секунду, в зависимости от применения). Поэтому в большинстве случаев квантовые криптографические системы (ККС) применяются для распределения ключей, которые затем используются средствами шифрования высокоскоростного потока данных. Важно отметить, что квантово-криптографическое оборудование пока серийно не выпускается. Однако по мере совершенствования и удешевления применяемой элементной базы можно ожидать появления ККС на рынке телекоммуникаций в качестве, например, дополнительной услуги при построении корпоративных волоконно-оптических сетей.

2.1. Природа секретности квантового канала связи.

При переходе от сигналов, где информация кодируется импульсами, содержащими тысячи фотонов, к сигналам, где среднее число фотонов, приходящихся на один импульс, много меньше единицы (порядка 0,1), вступают в действие законы квантовой физики. Именно на использовании этих законов в сочетании с процедурами классической криптографии основана природа секретности ККС. Здесь непосредственно применяется принцип неопределенности Гейзенберга, согласно которому попытка произвести измерения в квантовой системе искажает ее состояние, и полученная в результате такого измерения информация не полностью соответствует состоянию до начала измерений. Попытка перехвата информации из квантового канала связи неизбежно приводит к внесению в него помех, обнаруживаемых легальными пользователями. КК используют этот факт для обеспечения возможности двум сторонам, которые ранее не встречались и предварительно не обменивались никакой секретной информацией, осуществлять между собой связь в обстановке полной секретности без боязни быть подслушанными.

2.2.Принципы работы ККС и первая экспериментальная реализация.

В 1984 году Ч. Беннетт (фирма IBM) и Ж. Брассард (Монреальский университет) предложили простую схему защищенного квантового распределения ключей шифрования. Эта схема использует квантовый канал, по которому пользователи А и Б обмениваются сообщениями, передавая их в виде поляризованных фотонов. Подслушивающий их злоумышленник П может попытаться производить измерения этих фотонов, но он не может сделать это, не внося в них искажения. А и Б используют открытый канал для обсуждения и сравнения сигналов, передаваемых по квантовому каналу, проверяя их на возможность перехвата. Если при этом они не выявят искажений в процессе свыязи, они могут извлечь из полученных данных информацию, которая надежно распределена, случайна и секретна, несмотря на все технические ухищрения и вычислительные возможности, которыми располагает П.

Схема работает следующим образом. Сначала А генерирует и посылает Б последовательность фотонов, поляризация которых выбрана случайным образом и может составлять 0°, 45°, 90° или 135°. Б принимает эти фотоны и для каждого из них случайным образом решает, замерять ли его поляризацию как перпендикулярную или диагональную. Затем по открытому каналу Б объявляет для каждого фотона, какой тип измерений им был сделан (перпендикулярный или диагональный), но не сообщает результат этих измерений, например, 0°, 45°, 90° или 135°. По этому же открытому каналу А сообщает ему, правильный ли вид измерений был выбран для каждого фотона. Затем А и Б отбрасывают все случаи, когда Б сделал неправильные замеры или когда произошли сбои в его детекторах. Если квантовый канал не перехватывался, оставшиеся виды поляризаций, которые затем переводятся в биты, составят в совокупности поделенную между А и Б секретную информацию.

Следующее испытание на возможность перехвата может производиться пользователями А и Б по открытому каналу путем сравнения и отбрасывания случайно выбранных ими подмножеств полученных данных. Если такое сравнение выявит наличие перехвата, А и Б отбрасывают все свои данные и начинают с новой группы фотонов. В противном случае они оставляют прежнюю поляризацию, о которой не упоминалось по открытому каналу, в качестве секретной информации о битах, известных только им, принимая фотоны с горизонтальной или 45-градусной поляризацией за двоичный ноль, а с вертикальной или 135-градусной поляризацией - за двоичную единицу.

Согласно принципу неопределенности, П не может замерить как прямоугольную, так и диагональную поляризации одного и того же фотона. Даже если он для какого-либо фотона произведет неправильное измерение и перешлет Б этот фотон в соответствии с результатом своих измерений, это неизбежно внесет случайность в первоначальную поляризацию, с которой он посылался А. В результате появятся ошибки в одной четвертой части битов, составляющих данные Б, которые были подвергнуты перехвату.

Более эффективной проверкой для А и Б является проверка на четность, осуществляемая по открытому каналу. Например, А может сообщить: "Я просмотрел 1-й, 4-й, 5-й, 8-й, ... и 998-й из моих 1000 битов данных, и они содержат четное число единиц. Тогда Б подсчитывает число единиц на тех же самых позициях. Можно показать, что если данные у Б и А отличаются, проверка на четность случайного подмножества этих данных выявит этот факт с вероятностью 0,5 независимо от числа и местоположения ошибок. Достаточно повторить такой тест 20 раз с 20 различными случайными подмножествами, чтобы сделать вероятность необнаруженной ошибки очень малой.

А и Б могут также использовать для коррекции ошибок коды, исправляющие ошибки, обсуждая результаты кодирования по открытому каналу. Однако при этом часть информации может попасть к П. Тем не менее А и Б, зная интенсивность вспышек света и количество обнаруженных и исправленных ошибок, могут оценить количество информации, попадающей к П.

Знание П значительной части ключа может во многих случаях привести к вскрытию им сообщения. Беннетт и Брассард совместно с Ж. М. Робертом разработали математический метод, называемый усилением секретности. Он состоит в том, что при обсуждении по открытому каналу из части секретной битовой последовательности пользователи выделяют некоторое количество особо секретных данных, из которых перехватчик с большой вероятностью не в состоянии узнать даже значения одного бита. В частности, было предложено использовать некоторую функцию уменьшения длины (функцию хэширования). После применения этой функции пользователями А и Б к имеющимся у них последовательностям битов частичная информация перехватчика о массиве их данных преобразуется практически в отсутствие какой-либо информации о выходных данных функции.

Например, если входная последовательность состоит из 1000 бит, из которых П известно более 200, А и Б могут выделить около 800 особо секретных битов в качестве выходной последовательности. В качестве таковых они могут взять любое множество таких битов, которые с наибольшей достоверностью были идентичны при проведении ими измерений (при этом им следует сохранять в тайне это соответствие, а не обсуждать его по открытому каналу). Так, например, А и Б могут определить каждый выходной бит функции усиления секретности как четность независимого публично оговоренного случайного набора битов из полного массива.

К-во Просмотров: 350
Бесплатно скачать Реферат: Защита информации. Криптография