Реферат: Земля

Не до конца изучены и "простые" молнии. Только недавно, например, выяснилось, что 85% молний разряжаются над сушей, которая занимает далеко не большую часть поверхности планеты. Эти данные получены японо-американским спутником "TRMM" в ноябре 1997 г. [Спутник считает молнии, 1999]. Грозы характерны для летнего периода, а летом суша значительно теплее моря. Большие перепады температур способствуют мощным конвективным течениям атмосферы. Ветер поднимает заряженные ледяные кристаллики, чем способствует появлению электрически заряженных участков атмосферы.

Атмосфера тесно связана с планетой в целом. Так, например, через каждые 3 - 5 минут по всему Земному шару, как по гудящему колоколу, пробегает волна, которая регистрируется современными чуткими сейсмографами. Оказалось, что землетрясения к этому явлению не причастны, и волну создаёт трение движущихся воздушных потоков о поверхность планеты [Земля "звенит", 1998]. Свободные сейсмические колебания возникают из-за изменений атмосферного давления и имеют годичные вариации с пиком интенсивности в июле-августе. Имеется резонанс между колебаниями поверхности и свободными акустическими колебаниями атмосферы [Колебания недр Земли и её атмосферы, 2000].

В железный океан на поверхности ядра вонзаются перевёрнутые горы относительно твёрдого мантийного вещества, из-за которых движение жидких железных струй усложняется, становится неравномерным [Блоксхам, Габбинз, 1990]. Это приводит к непрерывным изменениям напряжённости магнитного поля, к отклонениям магнитной оси от оси вращения планеты, а также к блужданию магнитных полюсов. Изменения магнитного поля особенно хорошо изучены за последние 300 лет [Блоксхам, Габбинз, 1990]. Известно также, что магнитное поле за долгую историю нашей планеты неоднократно ослабевало до нуля и меняло знак. По вмороженным в горные породы силовым линиям магнитного поля вроде бы даже установили, что магнитное поле меняло знак с периодичностью в 285 и 34 миллиона лет, с чем пытались связывать периоды массового вымирания живых существ на планете из-за космических лучей (эти губительные для всего живого лучи способны достигать земной поверхности только в моменты отсутствия у Земли магнитного поля). Один из этих периодов даже попытались связать с периодом обращения Солнечной системы вокруг центра Нашей Галактики [Спор об обращениях магнитного поля Земли, 1989]. Тем не менее, есть публикации, в которых утверждается, что смена магнитных полюсов происходит нерегулярно, хаотично, в интервалы от 100 тысяч лет до 1 миллиона лет. Есть указания, что продолжительность эпох одной полярности в новейшее геологическое время составляла 200 000 лет, а в древнее время - 1 000 000 - 10 000 000 лет [Жарков, 1983], но какие-то из древних изменений могли быть не замечены. В общем, этот вопрос нельзя считать решённым. Чередующиеся геомагнитные эпохи различаются по преобладающей направленности геомагнитного поля, а внутри эпох выделяются эпизоды с противоположной полярностью.

Важны не только полные повороты магнитного поля, но и колебания его мощности. Примерно с середины 19-го века мощность уменьшается на 0,05% в год, и, если тенденция сохранится, поле должно исчезнуть через 2000 лет [Жарков, 1983]. Но вероятно, этого не произойдёт, так как мы имеем дело с какими-то постоянными колебаниями магнитного поля. Обычно поле менялось вокруг средней величины, близкой к современной. Вроде бы выявлены периоды таких колебаний: 550, 700, 1200, 1800, 7000, 8000 лет...

Магнитное поле Земли может меняться не только от "перевёрнутых" мантийных гор. Есть, например, предположение, что даже крупный метеорит может его изменить [Земля..., 1990]. В случае падения такого метеорита поднимается облако пыли. Да ещё пожары начинаются на целом континенте. Пыль и дым заслоняют солнце, и происходит похолодание на всей планете. Тогда на полюсах намерзает много льда, и Земля, согласно закону сохранения количества движения, начинает вращаться ускоренно. Жидкое железо на поверхности ядра отстаёт от ускорившейся планеты, из-за чего увеличивается хаотичность движения железных струй. А это ослабляет магнитное поле, и, как указывают авторы гипотезы, изменение поля может произойти вплоть до его поворота.

Земной шар на несколько километров сплюснут у полюсов, то есть это, строго говоря, не шар, а эллипсоид вращения (или ещё точнее - геоид). Сплюснутость выражается и в ширине атмосферных слоёв (см. выше). Есть и другого рода отличия от строгой шарообразности. Так, например, почти половина поверхности Земного шара занята Тихим океаном, а материки сконцентрированы, в основном, на противоположном полушарии.

Температура на поверхности Земли бывает в интервале от минус 88,3 градусов Цельсия (Антарктида) до плюс 57,8 градусов Цельсия (Мексиканское нагорье). Очень низкие температуры зафиксированы также в Оймяконе (-77,8) и Верхоянске (-67,8) (обе точки в России), очень высокие - в Долине Смерти в США (56,7) и на плато Стюарт в Австралии (55).

Температура в недрах Земли гораздо выше. Энергия выделяется при распаде атомных ядер радиоактивных элементов. Накопившееся тепло постепенно выходит наружу, вызывая движение мантийных струй и материков [Хауэлл, 1986; Хаин, 1995; Пущаровский, 1995]. Дело в том, через тонкую океаническую кору (6 - 7 км) внутреннее земное тепло легче покидает планету, чем через материковую кору (порядка 50 км). Средний тепловой поток в океанах - 1,51 мккал/(см2.с), на континентах - 1,41 мккал/(см2.с) [Жарков, 1983]. Тепло скапливается под самыми большими материками. При нагревании вещество мантии под материком расширяется и становится легче, чем было. Поэтому оно начинает медленно подниматься вверх, всплывать. Возникает восходящая мантийная струя (скорость всплывания вещества порядка нескольких сантиметров в год или даже меньше). Мантийная струя "бьётся" о материковую кору и начинает растекаться под материком во все стороны, увлекая за собой и материковую кору. Материк раскалывается, и его фрагменты начинают постепенно расходиться в разные стороны, а между ними раскрываются новые океаны. Интересно, что тепловыделение Земли на 40% определяется радиоактивным распадом в самой коре, а более глубокое тепло за прошедшие миллиарды лет ещё не успело выйти наружу, и Земля за всё время в среднем остыла только на 800 градусов Цельсия [Жарков, 1983]. Впрочем, из-за открытия конвективного переноса тепла эти цифровые данные, возможно, будут пересмотрены. В той же сводке В.Н.Жаркова [1983] есть указание, что теплопоток из коры составляет 40 % лишь на материках, а в океанах почти всё тепло поступает из мантии.

Материки движутся вместе с какой-то частью океанического дна, образуя единую литосферную плиту [Пущаровский, 1995 и др.]. Сейчас на Земном шаре можно насчитать от 7 до 11 - 12 литосферных плит, если пренебрегать или не пренебрегать несколькими "маленькими" самостоятельно действующими блоками - Аравией, Центральной Америкой и др.

Африканская плита практически покоится. Большинство плит движутся со скоростью 2 см в год, то есть относительно медленно (Северо-Американская, Евразийская, Аравийская, Южно-Американская, Антарктическая и, возможно, Карибская?). Со скоростью 6 - 9 см в год движутся плиты с протяжёнными границами субдукции, то есть частично утонувшие плиты (Кокос, Наска, Филиппинская, Индийская) ["Скоростная" тектоническая плита, 1997]. Индостанская и Евразийская плиты сейчас сталкиваются со скоростью 5,5 см/год [Самая высокогорная обсерватория, 2002]. Наиболее быстрое движение свойственно в настоящее время Тихоокеанской литосферной плите в районе острова Пасхи - 15 см/год ["Скоростная" тектоническая плита, 1997].

Можно сделать ряд обобщений:

чем большая площадь плиты занята материком, тем медленнее движется плита относительно мантии;

чем больше относительная длина границ поглощения, тем больше их скорость;

чем ближе плита к экватору, тем она быстрее движется, то есть вращение Земли тоже имеет значение в механизме тектоники плит [Жарков, 1983].

Расходящиеся "обломки" материков когда-то и где-то (например, на противоположной стороне Земного шара) вновь собираются вместе. Возникает новый большой материк или даже сверхматерик, собранный из всех материков, и процесс повторяется снова. Цикл занимает примерно 500 миллионов лет (200 - движения материков друг к другу, 100 - существования единого сверхматерика Пангеи, 200 - расхождения материков). Достоверно, что материки на Земном шаре не менее двух раз собирались воедино (Пангея-I и Пангея-II) [Хаин, Божко, 1989; Мерфи, Нанс, 1992]. Есть и нисходящие мантийные струи, или противоструи (под океаном или под недавно "собравшимся" большим материком, пока тепло ещё не накопилось под ним). В настоящее время (последние 200 с лишним миллионов лет) восходящая мантийная струя "бьётся" в Африку, куполообразно вспучивая этот континент. Поэтому в Африке (особенно в её центре - посмотрите в географический атлас!) почти нет длинных горных хребтов вроде Анд или Гималаев, но зато вся она приподнятая. Африка - центр бывшего сверхматерика Пангея-II. 180 миллионов лет назад Пангея-II раскололась, сначала образовались Гондвана (южный сверхматерик) и Лавразия (северный сверхматерик), которые потом тоже раскололись, и во все стороны разбежались современные материки и их части: Южная Америка, Австралия, Антарктида, Индия (части южного сверхматерика), Северная Америка, Восточная Европа и Сибирь (части северного материка) [Хаин, Божко, 1989]. Они всё ещё продолжают разбегаться в разные стороны, а сама Африка всё ещё продолжает раскалываться. Новые трещины - пролив у Мадагаскара, Красное море, разлом с озёрами Танганьика и Ньяса. Старые трещины - Атлантический и Индийский океаны. В их срединных частях находятся подводные хребты (срединные океанические хребты). Это швы, вблизи которых рождается новая земная кора. Расходящиеся материки обладают спокойным берегом, который обращён к Африке, и бурным противоположным берегом. Там дымят вулканы, растут горы (Кордильеры и Анды в Америке), часто происходят землетрясения. Из-за надвижения материков сокращается и как бы закрывается Тихий океан, опоясанный Тихоокеанским вулканическим кольцом (местом столкновения литосферных плит). Где-то под Тихим океаном или под юго-восточной частью Евразии имеется нисходящая струя [Хаин, 1995]. Здесь сталкиваются обломки материков. Сравнительно недавно отколовшаяся от Африки Индия, закрыв океан Тетис и раскрыв часть Индийского океана, столкнулась с Евразией и продолжает вдавливаться в этот новый сверхматерик. В результате этого образуется складка - постоянно растущие горы Гималаи. При столкновении материков более тяжёлый из них тонет и в 2 этапа уходит в глубины мантии к ядру Земли (холодная литосферная плита погружается на 570 км до границы верхней и нижней мантии, задерживается здесь на 100 - 400 миллионов лет, а потом быстро тонет до границы мантии и ядра), а более лёгкий материк выпячивается вверх в виде горного хребта [Хаин, 1995]. В Азии много вытянутых горных систем (Саяны, Алтай, Тянь-Шань, Алай, Нань-Шань, Куньлунь и другие). Всё это следы столкновения материковых пар, из которой один материк (или огромный материковый остров вроде направившегося вслед за Индией Мадагаскара) утонул, погрузился в глубины мантии. Аравийский полуостров, отколовшийся от Африки позднее Индии, сейчас со скоростью 3 см в год вдавливается в Азию, и от этого растёт Кавказ, происходят землетрясения. Многие более мелкие "кусочки" пересекли Средиземное море (остатки океана Тетис) и образовали горные складки в Европе [Казьмин, 1989]. Одна из самых молодых складок - Альпийская (Альпы, Карпаты, Крым, а также упоминавшийся Кавказ). Отголоски землетрясений в Карпатах мы иногда ощущаем и в Москве в виде толчков силой 1 - 3 балла [Никонов, 1997]. Атлантический океан между Африкой и Америкой открылся 180 миллионов лет назад (открыто Вегенером в 1912 г.) и по прогнозам будет расти ещё 20 миллионов лет (до возраста в 200 миллионов лет), а потом начнёт закрываться. За последние 2 миллиарда лет могло возникнуть и исчезнуть около 20 океанов [Хауэлл, 1986]. Материки разрываются также из-за быстрого вращения планеты, хотя это и не главная причина [Мерфи, Нанс, 1992]. В общем, мы обитаем на геологически бурной планете, лик которой непрерывно преображается. Скорость этого преображения значительно больше, чем на Венере.

В движении материков, наряду с упорядоченностью, наблюдается и хаотичность из-за того, что во многом хаотичны конвективные струи горячего и холодного вещества в мантии, то есть многие геодинамические процессы нелинейны [Пущаровский, 1998]. Восходящая и нисходящая струи могут быть и не в строго противоположных частях планеты (первая под Африкой, вторая под Азией). За счёт этого, возможно, поддерживается асимметрия планеты: в одном полушарии - Тихий океан, в другом - материки; на севере больше материков, на юге - воды и т.д.

Движение мантийных струй - не единственный механизм тектоники плит. Тяжёлая и частично утонувшая часть плиты может увлекать за собой всю остальную плиту и даже приводить в движение мантию. В местах столкновения материковых и океанических плит ожидали обнаружить силу сжатия, а оказалось растяжение [Жарков, 1983]. Значит, важна сила тяги холодного и тяжёлого погружающегося в мантию блока. Остальные же плиты просто расталкиваются тонущими соседями. Этим объясняется качественная разница в скоростях движения двух групп плит. Получается, что отодвинувшаяся от срединного океанического хребта и остывшая литосфера, которая тонет, - это основная движущая сила тектоники плит [Жарков, 1983]. Автору этой работы думается, однако, что речь всё-таки идёт о деталях механизма тектоники плит, а не об основной движущей силе, и прежние авторы, указывая на тепловую конвекцию в мантии, были ближе к истине. Так можно в мыльной воде создать рукой сложную структуру вертикальных и горизонтальных течений, при которой будут области быстрых течений ("океаническая кора") и тихие области, где скопились мыльные пузыри ("материки"), быстрые струи будут обладать некоторой инерцией и влиять на тихие области, формируя их, но движущей силой будет рука, а не тонущие быстрые струи.

Погружающаяся плита сначала быстро "падает", а потом тормозится на глубине порядка 700 км и испытывает сжатие [Жарков, 1983].

Тектонические перемещения материков - не единственные крупномасштабные движения поверхностного вещества на Земле. Так, например, в конце 1990-х годов был открыт гигантский оползень на дне Чёрного моря [Казанцев, Кругляков, 1998]. Блок площадью 200 км2 и толщиной 200 м (примерно 40 кубических километров) переместился на 22 км с глубины 1500 - 1950 м на глубину 1950 - 2050 м. Видимо, такое перемещение произошло не мгновенно (а то было бы сильнейшее землетрясение с цунами), но всё же за ограниченное число лет, то есть гораздо быстрее, чем перемещаются материки. Не сходное ли перемещение вещества описано на Венере как не имеющее аналога на Земле?

Горы на Земле имеют различную природу. Они воздымаются в виде плоскогорий в местах, где вверх "бьёт" мантийная струя (в Африке), выпячиваются в местах столкновения материков и материковых островов (Гималаи, Кавказ, Карпаты, Альпы, а в далёком прошлом - Урал, Аппалачи), возникают в виде складки на переднем краю движущегося материка (Анды и Кордильеры в Америке, Большой Водораздельный хребет и Австралийские Альпы в Австралии), оконтуривают разломы "трескающихся" материков (вблизи озёр Ньяса и Танганьика в Африке), вырастают с океанического дна в виде срединных океанических хребтов (например, в Атлантическом океане). Они имеют самый разный облик, в том числе в виде параллельных хребтов (как иногда на Венере). Средняя скорость роста гор - 0,6 мм/год, рекордная - 9 мм/год (Гималаи) [Никонов, 1988]. Есть, правда, указание, что плато Путорана в Сибири растёт со скоростью 11 мм/год [Пармузин, 1988].

Притяжение не везде на Земле абсолютно одинаковое. Есть небольшие отклонения, вызванные флуктуациями плотности в коре и мантии. Интересно, что горы не вызывают подобных отклонений, то есть не притягивают больше, чем равнины. Это объясняется тем, что горы скомпенсированы уменьшением плотности под ними. То есть горы как бы плавают в коре, как айсберги, имея уходящие вглубь "корни" [Жарков, 1983]. Отсюда можно сделать вывод, что выветривание, которое переносит горный материал в понижения, должно нарушать сложившееся равновесие, а поэтому горы из-за выветривания могут слегка подрастать, как бы всплывать. Если перенести эти рассуждения на возвышенности и низменности, то станет понятным, почему, например, Теплостанской возвышенности в Москве соответствует прогиб фундамента и почему эта возвышенность, подтачиваемая рекой Москвой и другими реками, продолжает слегка расти относительно окружающей местности (предположения автора).

С движением материков, то есть с тектоникой литосферных плит, тесно связан карбонатно-силикатный геохимический цикл, имеющий значение в масштабах всей планеты [Кастинг и др., 1988]. Из-за "неисправностей" этого цикла на Венере, например, нет жизни. Суть карбонатно-силикатного цикла в круговороте углерода и поддержании в земной атмосфере постоянного процентного содержания углекислого газа, который необходим для жизни в малых количествах и смертельно ядовит в больших количествах. Кроме того, углекислый газ, когда он в больших количествах, вызывает перегрев планеты из-за парникового эффекта (солнечные лучи на 20% всё же проникают к твёрдой поверхности Венеры, а приносимое ими тепло почти не может покинуть планету и накапливается). Излишки углекислого газа непрерывно вымываются из земной атмосферы дождями (углекислый газ растворяется в дождевых каплях, превращаясь в угольную кислоту) [CO2 + H2O -> H2CO3]. Угольная кислота, падающая с неба, разрушает кальциево-силикатные горные породы [CaSiO3 + 2 H2CO2 -> Ca++ + 2 HCO3- + H2O + SiO2]. Ионы кальция и гидрокарбоната (известь) смываются грунтовыми водами, ручьями и реками в море. Там известь усваивается морскими живыми организмами, строящими из неё свои раковины и внутренние скелеты [Ca++ + 2 HCO3 -> CaCO3 + вода + растворённый в воде углекислый газ]. При отмирании живых организмов их известковые раковины и скелеты падают на дно, образуя карбонатные осадочные породы (известняки или доломиты, если есть примесь ионов магния). Если бы не было жизни, известь сама бы оседала на дне морей, но это происходило бы при чуть более высокой её концентрации в морской воде. Далее эти известковые породы при столкновении материков попадают на большие глубины, где при высоких температурах соединяются с кремнезёмом и образуют силикаты и углекислый газ [CaCO3 + SiO2 -> CaSiO3 + CO2]. Углекислый газ через срединные океанические хребты (где возникает молодая кора) и через вулканы по краям литосферных плит выход наружу в атмосферу. Карбонатно-силикатный цикл поддерживает умеренную температуру воздуха на планете.

Механизм буферного эффекта температуры воздуха:

ниже температура воздуха - меньше испарение влаги - меньше облаков и туч - меньше дождей - углекислый газ не вымывается из атмосферы - парниковый эффект - выше температура воздуха;

выше температура воздуха - больше испарение влаги и т.д.

Интересно, что температуру воздуха на Земле теперь может поднять не только дополнительный углекислый газ, выделяемый заводами, фабриками и котельными, но и фтороформ, образующийся в процессе производства. По парниковому эффекту он в 10 000 раз превосходит углекислый газ (Фтороформ - мощный парниковый газ, 1999), по другим данным - в 22000 раз [Ещё один опасный..., 2001]. К числу парниковых газов относится и метан, концентрация которого в атмосфере за два последних века всё время увеличивалась, хотя в последнее время темпы накопления снизились [Поступление метана в атмосферу замедлилось, 2000]. Другие парниковые газы - N2O, SF5CF3 (трифторметилпентафторид серы) [Ещё один опасный, 2001].

Возможные "поломки" карбонатно-силикатного цикла:

нет тектоники плит, и известь не превращается в углекислый газ атмосферы, вся сосредоточена в горных породах (Марс, переохлаждение);

нет воды, которая смывает углекислый газ из атмосферы, и он накапливается в атмосфере (Венера, перегрев).

К-во Просмотров: 1439
Бесплатно скачать Реферат: Земля