Реферат: Жидкокристаллические соединения
Толстые пленки нематических ЖК мутны. В пленках толще 0,1 мм, помещенных между скрещенными николями, видны нитевидные дисклинации. В более тонких пленках можно получить шлирен-текстуру с точечными особенностями (сингулярностями) (рис. 8). Эти особенности соответствуют нитям, расположенным перпендикулярно пленке и характеризующимся определенным числом темных полос, выявляемых при наблюдении между скрещенными николями. Обычно обнаруживают точки с двумя или четырьмя полосами. При одновременном вращений николей, полосы вращаются либо в том же, либо в противоположном направлениях; в соответствии с этим различают положительные и отрицательные точки.
Рис. 8. Нематическая шлирен-текстура. Скрещенные николи, Х120. Видны 2 и 4 темные полосы, исходящие из одной точки.
Ориентировать молекулы в пленках жидкого нематика можно, воздействуя на них специально обработанными поверхностями. Если поверхность натирать в одном направлении, молекулы расположатся своими длинными осями вдоль этого направления. При другом способе обработки – с помощью некоторых поверхностно-активных веществ – длинные оси молекул могут ориентироваться либо перпендикулярно, либо параллельно поверхности. Если длинные оси ориентированы в основном перпендикулярно, то образуется псевдоизотропная текстура. При наблюдении между скрещенными николями она кажется темной. Если коснуться покровного стекла, возникают вспышки света; это указывает на нарушение перпендикулярной ориентации.
В термотропных жидких кристаллах нематическая мезофаза – самая высокотемпературная. При нагревании она переходит в изотропную жидкость. Этот переход – первого рода; энтальпия перехода составляет 0,1 – 1,0 ккал∙моль-1 . Энергия, необходимая для деформации ЖК, настолько мала, что даже слабые возмущения, вызываемые частицами пыли или неоднородностями поверхности стекла, на котором покоится жидкий кристалл, могут существенно исказить структуру.[2]
Нематические ЖК обладают осью симметрии бесконечного порядка и поэтому являются одноосными. Молекулы в нематическом ЖК ориентированы (вдоль выделенного направления) не полностью; степень ориентации можно количественно описать с помощью одного параметра порядка, S,
(1)
где θ – угол между длинной осью молекулы и осью симметрии нематика. Экспериментальные значения параметра S лежат в интервале от 0,4 (вблизи точки перехода нематика в изотропную жидкость) до 0,8 (вблизи точки кристаллизации нематика, если не образуется смектическая фаза).[6]
4.3 Холестерический тип ЖК
Наиболее сложный тип упорядочения молекул ЖК холестерический (холестерики), образуемый хиральными (оптически акт ивными) молекулами, содержащими асимметрический атом углерода. Это означает, что такие мо лекулы являются зеркально-несимметричными в отличие о т зе ркально-симметричных молекул нематиков. Впервые холестерическая мезофаза наблюдалась для производных холе стерина, откуда и произошло ее название. Холестерики во многих отнош ениях по добны нематикам, в которых реализуется од номерный ориентационный порядок; они образуются также при добавлении небольших количеств хиральных соединений (1-2 мол. %) к нематикам. Как видно из (рис. 4, в), в этом случае дополнительно реализуется спиральная закрученность молекул, и очень часто холестерик называют закрученным нематиком. [4]
Отсутствие дальнего трансляционного порядка обусловливает текучесть холестерика. Локально структуры нематика и холестерика очень похожи, однако на больших расстояниях ориентация директора n в холестерике оказывается винтовой. Когда шаг винта совпадает с длинной волны падающего света, возникает сильное брэгговское отражение; если при этом длина волны лежит в видимой области, холестерический ЖК кажется ярко окрашенным. Если этот шаг бесконечен, кристалл является обычным нематиком, если он равен нулю, система обладает цилиндрической симметрией.[3]
Шаг винтовой молекулярной упаковки в таком закрученном ЖК чувствителен к температуре. При освещении монохроматическим светом наиболее чувствительных холестериков заметное глазом изменение интенсивности отраженного света происходит при изменении температуры всего на 0,001°С. Для приложений, в которых не требуется столь высокая чувствительность, можно использовать естественный свет – видимые изменения происходят при изменении температуры на 0,01°С.
Холестерический ЖК ведет себя при освещении его видимым светом как дифракционная решетка. В этом отношении его можно уподобить обычному кристаллу (например, кристаллу NaCl), на котором происходит дифракция рентгеновых лучей.[2]
При фиксированном угле отражения условия интерференции выполняются только для лучей одного цвета, и слой (или пленка) холестерика кажется окрашенным в один ц вет. Этот ц вет определяется шагом спирали Р, который при нормальном угле падения света простым образ ом связан с максимумом длины волны отраженного света l max :
P = lmax / n, (2)
где n — показатель преломления холестерика. Этот эффект избирательного отражения пленкой холестерика света с определенной длиной волны получил название селективного отражения. В зависимости от величины шага спирали, который определяется химической природой холестерика, максимум длины волны отраженного света может располагаться в видимой, а также в ИК- и УФ-областях спектра, определяя широкие области использования оптических свойств холестериков . У большинства холестериков с ростом температуры шаг спирали уменьшается, а следовательно, уменьшается и длина волны селективно отраженного света lmax (рис. 9).
Рис. 9. Температурная зависимость длины волны селективного отражения света l max слоя холестерического жидкого кристалла — холестерилпеларгоната.
Любой из трех типов мезофаз рассматривается обычно как непрерывная анизотропная среда, где в небольших по размерам микрообъемах (их часто называют роями или доменами), состоящ их, как правило, из 104 -105 молекул, молекулы ориентированы параллельно друг другу .[1]
Неориентированные холестерики образуют конфокальную текстуру, которая состоит из отдельных и связанных между собой сложных образований, называемых конфокальными доменами (рис. 10).
Рис. 10. Конфокальная текстура жидких кристаллов.
5. Лиотропные жидкие кристаллы
В отличие от термотропных жид ких кристаллов лиотропные жидкие кристаллы образуются при растворении ряда амфифильных соединений в определенных растворителях и имеют, как правило, более сложную структуру, чем термотропные жидкие кристаллы. Амфифильные соединения состоят из молекул, содержащих гидрофильные и гид рофобные группы. Амфифильные молекулы располагаются так, чтобы обеспечить минимум свободной энергии, и агрегаты молекул при высокой и низкой влажности существенно не различаются.[1]
Водорастворимая часть
молекулы
Водонерастворимая часть
молекулы
Схема 1. Общая формула фосфолипидов и растворимость
в воде разных частей фосфолипидной молекулы.