Реферат: Зменшення "Блочного ефекту" при передачі зображення
Міністерство освіти та науки України
Вінницький національний технічний університет
Факультет АКСУ
Кафедра АІВТ
Звіт на тему :
Зменшення „Блочного ефекту ” при передачі зображення
з дисципліни
“Основи науково-дослідної роботи”
Вінниця 2007
Зменшення „Блочного ефекту” при передачі зображення
Проблеми , що виникають при збільшенні чи передаванні зображення, задають чи мало клопоту для більш детального перегляду. Існує чи – мало методів для покращення зображення, серед яких вейвлет-метод та метод градієнтного потоку.
Розглянемо з існуючих методів покращення якості зображень ці два методи, які основані на суб’єктивному сприйняттю роздільної здатності і кількості кольорів. При однакових значеннях параметрів пристрою графічного виводу можна створити ілюзію збільшення роздільної здатності або кількості кольорів. При чому суб’єктивне покращення одної характеристики виконується за рахунок погіршення іншої.
Робота проводиться з метою виявлення можливостей та функцій, які надаються методам, а також для порівняння отриманих результатів.
1. Аналіз вєйвлет метода і метода градієнтського потоку.
2. Виявити можливості та основні функції
3. Проаналізувати та оцінити отримані результати.
4. Провести порівняльну характеристику.
5. Зробити висновки.
Зміст
Вступ
Аналіз вейвлет метода і метода градієнтського потоку
Можливості та основні функції
Аналіз та оцінка результатів
Порівняльна характеристика
Висновки
Використані джерела
Вступ
В даний час існує досить багато спеціалізованих автоматизованих систем для аналізу зображень. Як правило спеціалізовані АС жорстко прив'язані до об'єкту діагностики, і їх адаптація до нового об'єкту діагностики практично зводиться до розробки нової АС, яка б враховувала особливості об'єкту діагностики.
Автоматизовані системи "загального призначення" як правило включають велику бібліотеку алгоритмів обробки зображень. Проте саме із-за їх універсальності особливості конкретного об'єкту діагностики не можуть бути враховані.
Деякі ідеї теорії вейвлетов з'явилися дуже давно. Наприклад, вже в 1910 році А.Хаар опублікував повну ортонормальну систему базисних функцій з локальною областю визначення (тепер вони називаються вейвлетами Хаара). Перша згадка про вейвлетах з'явилася в літературі по цифровій обробці і аналізу сейсмічних сигналів (роботи А. Гроссмана і Ж.Морле). Останнім часом виникло і оформилося цілий науковий напрям, пов'язаний з вейвлет-аналізом і теорією вейвлет-перетворення.Вейвлети широко застосовуються для фільтрації і попередньої обробки даних, аналізу стану і прогнозування ситуації на фондових ринках, розпізнавання образів, при обробці і синтезі різних наприклад мовних, медичних, для вирішення завдань стискування і обробки зображень, при навчанні нейромережей і в багатьох інших випадках.
Вейвлет метод
У цифрових системах широко використається метод Wavelet. Послідовність дій, що використає метод стиску Wavelet, у цілому аналогічна алгоритму JPEG. Принципова різниця складається в способі перетворення відеосигналу: метод стиску JPEG використає дискретно-косинусное перетворення сигналу, тоді як метод стиску Wavelet представляє сигнал як суперпозицію кінцевих у часі негармонійних функцій - вейвлетів.
Метод стиску Wavelet перетворить зображення по наступному алгоритмі:
- Перетворення колірного простору
- Вейвлет-перетворення
- Квантування
- Кодування
Градієнтський метод
Різним об'єктам на зображеннях відповідають області з більш-менш однаковими значеннями яскравості. На границях же яскравість істотно міняється. Мірою зміни деякої величини є її похідна. На зображенні величина яскравості змінюється в просторі. Просторова похідна - це градієнт, що крім величини має ще й напрямок, тобто являє собою вектор.
Величина або модуль вектора градієнта визначає "силу" границі, тобто наскільки в даній крапці границі відрізняються яскравості об'єкта і його оточення. Напрямок вектора градієнта показує напрямок найбільшої зміни яскравості, тобто цей вектор спрямований перпендикулярно границі. Найчастіше напрямок границі не має значення, і в таких випадках досить визначити тільки величину модуля градієнта. Коли ж цей напрямок становить інтерес, необхідно обчислювати повний вектор градієнта.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--