Реферат: Знакомство с топологией

Первые достаточно общие определения топологического пространства даны в работах Фреше, Рисса и Хаусдорфа. Окончательно определение топологического пространства было сформулировано польским математиком К. Куратовским и П.С. Александровым.

5. Важные проблемы и результаты

Теорема Жордана о замкнутой кривой. Если на поверхности проведена простая замкнутая кривая, то существует ли какое-либо свойство кривой, которое сохраняется при деформации поверхности? Существование такого свойства вытекает из следующей теоремы: простая замкнутая кривая на плоскости делит плоскость на две области, внутреннюю и внешнюю. Эта кажущаяся тривиальной теорема очевидна для кривых простого вида, например, для окружности; однако для сложных замкнутых ломаных дело обстоит иначе. Теорема была впервые сформулирована и доказана К. Жорданом (1838–1922); однако доказательство Жордана оказалось ошибочным. Удовлетворительное доказательство было предложено О. Вебленом (1880–1960) в 1905.

Теорема Брауэра о неподвижной точке. Пусть D – замкнутая область, состоящая из окружности и ее внутренности. Теорема Брауэра утверждает, что для любого непрерывного преобразования, переводящего каждую точку области D в точку этой же области, существует некоторая точка, которая остается неподвижной при этом преобразовании. (Преобразование не предполагается взаимно однозначным.) Теорема Брауэра о неподвижной точке представляет особый интерес потому, что она, по-видимому, является, наиболее часто используемой в других разделах математики топологической теоремой.

Проблема четырех красок. Проблема заключается в следующем: можно ли любую карту раскрасить в четыре цвета так, чтобы любые две страны, имеющие общую границу, были раскрашены в различные цвета? Проблема четырех красок топологическая, так как ни форма стран, ни конфигурация границ не имеют значения.

Гипотеза о том, что четырех красок достаточно для соответствующей раскраски любой карты, была впервые высказана в 1852. Опыт показал, что четырех красок действительно достаточно, но строгого математического доказательства не удавалось получить на протяжении более ста лет. И только в 1976 К. Аппель и В. Хакен из Иллинойского университета, затратив более 1000 часов компьютерного времени, добились успеха.

Односторонние поверхности . Простейшей односторонней поверхностью является лист Мёбиуса, названный так в честь А. Мёбиуса, открывшего его необычайные топологические свойства в 1858. Пусть ABCD (рис. 2, а) – прямоугольная полоска бумаги. Если склеить точку A с точкой B, а точку C с точкой D (рис. 2, б), то получится кольцо с внутренней поверхностью, наружной поверхностью и двумя краями. Одну сторону кольца (рис. 2, б) можно окрасить. Окрашенная поверхность будет ограничена краями кольца. Жук может совершить «кругосветное путешествие» по кольцу, оставаясь либо на окрашенной, либо на неокрашенной поверхности. Но если полоску перед склеиванием концов перекрутить на пол-оборота и склеить точку A с точкой C, а B с D, то получится лист Мёбиуса (рис. 2, в). У этой фигуры есть только одна поверхность и один край. Любая попытка окрасить только одну сторону листа Мёбиуса обречена на неудачу, так как у листа Мёбиуса всего одна сторона. Жук, ползущий по середине листа Мёбиуса (не пересекая края), вернется в исходную точку в положении «вверх ногами». При разрезании листа Мёбиуса по средней линии он не распадается на две части.

Узлы. Узел можно представлять себе как запутанный кусок тонкой веревки с соединенными концами, расположенный в пространстве. Простейший пример – из куска веревки сделать петлю, пропустить один из ее концов сквозь петлю и соединить концы. В результате мы получим замкнутую кривую, которая остается топологически той же самой, как бы ее ни растягивать или скручивать, не разрывая и не склеивая при этом отдельные точки. Проблема классификации узлов по системе топологических инвариантов пока не решена.

Заключение

Топология – очень красивая наука. Она осуществляет связь геометрии с алгеброй. Ее идеи и образы играют ключевую роль практически во всей современной математике – в дифференциальных уравнениях, механике, комплексном анализе, алгебраической геометрии, функциональном анализе, математической и квантовой физике, теории представлений, и даже – в удивительно преображенном виде – в теории чисел, комбинаторике и теории сложности вычислений. В частности, современная топология находит широкое применение в механике и математической физике. Топологические методы широко используются в качественной теории движения твердого тела.


Список использованных источников и литературы

1. Александров П.С., Пасынков Б.А. Введение в теорию размерности. М.: Наука, 1973

2. Годеман Р. Алгебраическая топология и теория пучков. М.: ИЛ, 1961

3. Келли Дж.Л. Общая топология. М.: Наука 1968

4. Телеман К. Элементы топологии и дифференцируемые многообразия. М.: Мир, 1967

5. Хирцебрух Ф. Топологические методы в алгебраической геометрии. М.: Мир, 1973

6. Стюарт Я. Топология // Квант – 1992. – №7.

К-во Просмотров: 260
Бесплатно скачать Реферат: Знакомство с топологией