Реферат: Зорі їх утворення розвиток і види
Як народжуються зорі. Проблема зореутворення — одна з центральних у сучасній астрофізиці. Зорі — найпоширеніші у Всесвіті об'єкти, з них складаються більші структурні утворення — галактики. І питання про те, чому в різних регіонах Всесвіту речовина переважно формується саме в зорі, за яких умов і яким чином це звершується, не може не хвилювати астрономів. Тим більше, що явища, які відбуваються в процесі утворення і вмирання зір, мабуть, тісно пов'язані з найглибшими проблемами будови і еволюції матерії, зокрема з явищами, що відбуваються у світі елементарних частинок.
У сучасній астрофізиці є дві основні концепції походження зір. Одна з них, яка дістала назву «класичної», виходить з того, що зорі утворюються в процесі конденсації газу в холодних газопилових комплексах, гігантських безформних клоччастих утвореннях розмірами в багато десятків і сотень світлових років, що складаються головним чином з молекул водню. Що ж до пилинок, то вони являють собою дрібні тверді утворення, що розсіяні в космічному просторі і мають досить складну структуру, їх центральну частину становить тугоплавке силікатне чи графітове ядро, на яке намерзлизабруднені льоди. Як показують спостереження міжзоряного поглинання світла, розміри таких пилинок невеликі — від 0,1 до 1 мкм.
Формування зір починається з того, що в газопиловій хмарі або в якійсь її частині розвивається так звана гравітаційна нестійкість. Іншими словами, у хмарі відбувається процес наростання збурень густини і швидкості руху речовини, невеликих відхилень цих фізичних величин від їхніх середніх значень для даної хмари. З теорії виходить, що однорідний розподіл речовини за наявності сил тяжіння не може бути стійким. Речовина повинна розпадатися на окремі згустки. За одним з основних законів фізики будь-яка фізична система завжди прагне до такого стану, при якому її потенціальна енергія є мінімальною. При утворенні згустків і їх стисненні гравітаційна енергія переходить у кінетичну енергію речовини, що стискується, яка в свою чергу може переходити в теплову енергію і випромінюватися. Таким чином, внаслідок процесу фрагментації та утворення згустків зменшується потенціальна енергія.
Крім гравітаційної нестійкості, в процесі фрагментації газових хмар певну роль відіграє так звана термохімічна нестійкість, яка виникає внаслідок того, що швидкість утворення молекул усередині газопилового комплексу і швидкість охолодження газу за рахунок випромінювання цих молекул у радіодіапазоні відрізняються одна від одної.
У подальшому утворенні фрагменти в свою чергу діляться на ще дрібніші згустки і так доти, доки в результаті гравітаційного стиснення густина цих згустків зросте настільки, що в їх центральних частинах утворяться зореподібні ядра — протозорі, оточені масивними оболонками, які продовжують стискатися.
Як показують розрахунки, у тих випадках, коли маса згустка перевершує три маси Сонця, речовина оболонки вільно падає на ядро. Завдяки цьому, маса таких про-
тозір швидко збільшується, зростає їх світність. У якийсь момент випромінювання протозорі стає настільки сильним, що в результаті нагрівання оболонки і дії світлового тиску оболонка розсіюється в просторі.
Вивільнені від оболонок ядра деякий час ще продовжують стискатися і випромінювати досить значну кількість енергії, яка виділяється за рахунок гравітаційного стиснення. Температура в надрах протозорі зростає і, нарешті, стає достатньою для виникнення термоядерної реакції. Протозоря стає зорею.
Такою, якщо не вдаватися в деталі, найбільш популярною в сучасній астрофізиці є схема утворення зір з холодного газу в газопилових комплексах. Чи підтверджується вона астрономічними спостереженнями? Оскільки оболонки навколо протозір, що формуються, містять велику кількість пилу, наскрізь вони не проглядаються і це набагато утруднює спостереження початкової стадії формування зір.
Проте з розвитком радіо- і інфрачервоної астрономії з'явилася деяка можливість «зазирнути» в таємничі «зоряні колиски», оскільки пил і газ прозорі для цих електромагнітних випромінювань. У ряді районів виявлено компактні зони радіо- і інфрачервоного випромінювання, які витлумачуються прихильниками класичної концепції як зони, де містяться надзвичайно молоді зорі, яких в оптичному діапазоні спостерігати ще не можна.
Конденсаційної концепції додержують більшість сучасних астрономів. Проте ця обставина сама по собі ще не може бути остаточним доказом її справедливості. Тим більше, що таких спостережних даних, які підтверджували б її однозначно, поки що не існує. Ще Галілео Галілей зазначав, що в науці думка одного може виявитися правильнішою за думку тисячі. Тому зараз не можна скидати з рахунку й інші точки зору.
У всякому випадку в сучасній астрофізиці існує щеодна концепція зореутворення, яку протягом ряду років розробляє школа академіка В. А. Амбарцумяна. За назвою обсерваторії, директором якої він є, ця концепція дістала найменування бюраканської. її прихильники вважають, що зорі утворюються внаслідок розпаду на частини більш щільних, а можливо і надщільних об'єктів. Ці об'єкти можуть бути залишками тієї «первісної» речовини, з якої утворився наш Всесвіт.
На відміну од класичної концепції бюраканську у фізичному й математичному плані розроблено не так детально. Однак академік Амбарцумян вважає, що-така розробка завчасна, оскільки тут ідеться про найпотаєм-ніші космічні процеси, щодо яких у нас ще дуже мало фактів.
У спорі цих двох концепцій ідеться по суті не тільки про шлях формування зір, а й про спрямованість еволюційних процесів у Всесвіті взагалі: чи йдуть вони від розріджених станів до щільніших чи, навпаки,— від щільніших до розріджених?
Методичні міркування. Розрізняються і ті дослідницькі програми, яких додержують прихильники протиборствуючих концепцій. Тоді як «класики» вважають, що в основі розробки астрофізичної теорії має лежати метод побудови математичних і фізичних моделей, навіть за відсутності необхідної повноти спостережних даних, «бюраканці» вважають, що теорія повинна будуватися тільки на основі фактів, а до створення конкретних теоретичних моделей слід приступати лише тоді, коли дані спостережень дають змогу при побудові теорії обійтись практично без довільних додаткових припущень.
Слід зазначити, що виникнення різних, інколи протилежних напрямів у науці при розв'язанні складних фундаментальних проблем і гострих дискусій між їхніми прихильниками — цілком нормальне явище. На жаль, гострота полеміки змушує протиборствуючі сторони
повністю відкидати концепції, що протистоять їм. Проте тільки подальші дослідження можуть показати, яка точка зору ближча до істини. І дискусія про шляхи еволюційних процесів у Всесвіті не є винятком. До того ж не виключено, що в нескінченній різноманітності Всесвіту за одних умов формування нових космічних об'єктів може відбуватися конденсаційним шляхом, а за інших — бути наслідком розпаду.
Як було вже сказано, основна частина життя переважної більшості зір — це період, коли в їхніх надрах відбувається термоядерна реакція синтезу більш важких елементів з більш легких. На цьому етапі рівновага зорі підтримується рівновагою між тиском розпеченого газу в її надрах, який прагне розширити зорю, і силами тяжіння, що прагнуть її стиснути.
При цьому, якщо термоядерні реакції в надрах зорі чомусь прискорюються^ надходження тепла з її глибин до поверхні перевищує тепловіддачу в світовий простір, то температура в надрах зорі підвищується, тиск газу зростає і зоря починає розширятися. Центральна зона охолоджується, і термоядерна реакція приходить до норми. Навпаки, якщо тепловіддача в навколишній простір виявляється вищою, ніж енерговиділення, то зоря починає охолоджуватись, тиск у її надрах падав і сили тяжіння починають стискати зорю. Завдяки цьому надра зорі розігріваються, термоядерна реакція прискорюється і теплова рівновага, а водночас і баланс сил усередині зорі приходять до норми. Отже, зорі — це саморегульовані системи, створені самою природою.
Новий, по суті заключний, період в існуванні зорі настає тоді, коли її основне ядерне паливо — водень повністю вичерпується. У процесі термоядерної реакції в центральній частині зорі утворюється гелієве ядро. Потім це ядро починає стискатися, а зовнішні шари — оболонка зорі — розширятися. Зоря переходить у стадію
червоного гіганта. У її надрах в міру дальшого стискання одні термоядерні реакції заступають інші за участю дедалі важчих елементів. І відбувається це доти, доки не будуть вичерпані всі термоядерні джерела енергії.
Подальша доля вмираючої зорі залежить від її маси. Зорі, маса яких близька до сонячної або трохи перевищує її, перетворюються у так звані білі карлики, тобто в зорі зрадіусами в сотні разів меншими від радіуса Сонця. Густина речовини таких зір набагато перевищує густину сонячної речовини. У кожному кубічному сантиметрі простору білих карликів вміщуються десятки й сотні тонн речовини.
Білий карлик — стале утворення. Його рівновага підтримується, проте, внутрішнім тиском не звичайного, а електронного газу, який утворений великою кількістю вільних електронів. Густина цього газу цілком достатня для того, щоб припинити гравітаційне стискання зорі. В такому ґаві істотно проявляються квантові ефекти, і фізики навивають його «виродженим». З цієї причини і білих карликів нерідко навивають «виродженими зорями».
Температура поверхні найбільш гарячих вироджених карликів може досягати 50—100 тис. кельвінів. Під тонкою атмосферою такої зорі розташована щільна маса, що мав до самого центра однакову температуру. Втрати енергії на випромінювання у білих карликів порівняно невеликі, тому такі зорі охолоджуються надзвичайно повільно.
Типовим прикладом виродженого карлика е супутник найяскравішої зорі земного неба — Сіріуса — Сіріус В. До речі, Сіріус В став першим представником класу вироджених зір, виявленим астрономами...
Отже, зорі з масою, що не перевершує 1,4 маси Сонця, після вигоряння водню перетворюються на білих карликів. Якщо ж маса зорі, яка завершує свій життєвий шлях, більша за 1,4 маси Сонця, то стиснення настадії виродженого карлика не зупиняється, під дією сил тяжіння воно триває далі. Виникає так званий гравітаційний колапс — невтримне падіння речовини зорі до її центра.
На цьому етапі може статися потужний вибух зорі — вже відомий нам спалах наднової. При цьому залишок зорі, що вибухнула, може утворити об'єкт, у надрах якого під дією колосального тиску електрони виявляться «вдрукованими» у протони. Протони перетворяться у нейтрони.
Нейтронна зоря — компактне, надзвичайно щільне тіло діаметром усього близько 15—20 км. Середня густина речовини таких зір досягає дивовижної величини — 10м грамів у кубічному сантиметрі. Це густина ядерної речовини. Нейтронна зоря — це ніби збільшене в багато разів атомне ядро.
Цікаво, що існування нейтронних зір було теоретично передбачене ще в довоєнні роки видатним радянським ученим академіком Л. Д. Ландау. Але виявити їх удалося тільки в 1967 р. за незвичним імпульсним випромінюванням.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--