Шпаргалка: Билеты по астрономии, 11 класс

К концу сентября Солнце достигает второй точки пересечения эклиптики с экватором (α = 12ч ), и снова наступает равноденствие, теперь уже осеннее. Снова скорость изменения склонения Солнца достигает максимума, и оно быстро смещается к югу. Ночь становится длиннее дня, и с каждым днем высота Солнце в верхней кульминации уменьшается.

К концу декабря Солнце достигает самой южной точки эклиптики (α = 18ч ) и его движение на юг прекращается, оно снова "останавливается". Это зимнее солнцестояние. Солнце восходит почти на юго-востоке, заходит на юго-западе, а в полдень поднимается на юге на высоту h = 90° - φ - e.

А после все начинается сначала - склонение Солнца увеличивается, высота в верхней кульминации растет, день удлиняется, точки восхода и захода смещаются к северу.

Из-за рассеивания света земной атмосферой небо продолжает оставаться светлым и некоторое время после захода Солнца. Этот период называется сумерками. По глубине погружения Солнца под горизонт различаются сумерки гражданские (-8°<h<0°), когда еще совсем светло, навигационные (h>-12°) и астрономические (h>-18°), по окончании которых яркость ночного неба остается примерно постоянной.

Летом, при d = +e, высота Солнца в нижней кульминации равна h = φ + e - 90°. Поэтому севернее широты ~ 48°.5 в летнее солнцестояние Солнце в нижней кульминации погружается под горизонт меньше, чем на 18°, и летние ночи становятся светлыми из-за астрономических сумерек. Аналогично при φ > 54°.5 в летнее солнцестояние высота Солнца h > -12° - всю ночь длятся навигационные сумерки (в эту зону попадает Москва, где не темнеет по три месяца в году - с начала мая до начала августа). Еще севернее, при φ > 58°.5, летом уже не прекращаются гражданские сумерки (здесь расположен Петербург с его знаменитыми "белыми ночами").

Наконец, на широте φ = 90° - e суточная параллель Солнца во время солнцестояний коснется горизонта. Эта широта - северный полярный круг. Еще севернее Солнце на некоторое время летом не заходит за горизонт - наступает полярный день, а зимой - не восходит - полярная ночь.

А теперь рассмотрим более южные широты. Как уже говорилось, южнее широты φ = 90° - e - 18° ночи всегда темные. При дальнейшем движении на юг Солнце в любое время года поднимается все выше и выше, а различие между частями его суточной параллели, находящимися над и под горизонтом, уменьшается. Соответственно, и продолжительность дня и ночи даже во время солнцестояний различаются все меньше и меньше. Наконец, на широте j = e суточная параллель Солнца для летнего солнцестояния пройдет через зенит. Эта широта называется северным тропиком, в момент летнего солнцестояния в одной из точек на этой широте Солнце бывает точно в зените. Наконец, на экваторе суточные параллели Солнца всегда делятся горизонтом на две равные части, то есть день там всегда равен ночи, а Солнце бывает в зените во время равноденствий.

К югу от экватора все будет аналогично вышеописанному, только большую часть года (а южнее южного тропика - всегда) верхняя кульминация Солнца будет происходить к северу от зенита.

    Наведение на заданный объект и фокусирование телескопа.

БИЛЕТ № 5

1. Принцип работы и назначение телескопа.

Телескоп , астрономический прибор для наблюде­ния небесных светил. Хорошо сконструированный телескоп способен собирать электромагнитное излучение в различных диапазо­нах спектра. В астрономии оптический телескоп предназначен для увеличения изображения и сбора света от слабых ис­точников, особенно невидимых невооруженным глазом, т.к. по сравнению с ним способен собирать больше света и обеспечивать высокое угловое разрешение, поэтому в увеличенном изображении можно видеть больше дета­лей. В телескопе-рефракторе в качестве объектива ис­пользуется большая линза, собирающая и фокусирую­щая свет, а изображение рассматривается с помощью окуляра, состоящего из одной или нескольких линз. Основной проблемой при конструировании телескопов-рефракторов является хроматическая аберрация (цветная кайма вокруг изображения, создаваемого про­стой линзой вследствие того, что свет различных длин волн фокусируется на разных расстояниях.). Её можно устранить, используя комбинацию выпуклой и вогну­той линз, однако линзы больше некоторого предельного размера (около 1 метра в диаметре) изготовить невозможно. Поэтому в настоящее время предпочтение отдаются телескопам-рефлекторам, в которых в качестве объектива используется зеркало. Первый телескоп-рефлектор изобрел Ньютон по своей схеме, называемой сис­темой Ньютона. Сейчас существует несколько методов наблюдения изображения: системы Ньютона, Кассегрена (положение фокуса удобно для регистрации и анализа света с помощью других приборов, таких, как фотометр или спектрометр), куде (схема очень удобна, когда для анализа света требуется громоздкое оборудование), Максутова (т.н. менисковая), Шмидта (приме­няется, когда необходимо сделать масштабные обзоры неба).

Наряду с оптическими телескопами имеются телескопы, собирающие электромагнитное излучение в других диапазонах. Например, широко распространены различные типы радиотелескопов (с параболическим зеркалом: неподвижные и полноповоротные; типа РАТАН-600; синфазные; радиоинтерферометры). Имеются также телескопы для регистрации рентгеновского и гамма-излучения. Поскольку последнее поглоща­ется земной атмосферой, рентгеновские телескопы обычно уста­навливаются на спутниках или воздушных зондах. Гамма-ас­трономия использует телескопы, располагаемые на спутниках.

    Вычисление периода обращения планеты на основе третьего закона Кеплера.

Тз = 1год

аз = 1 астрономическая единица

1 парсек = 3,26 светового года = 206265 а. е. = 3 * 1011 км.

БИЛЕТ № 6

    Способы определения расстояний до тел Солнечной системы и их размеров.

Сперва определяется расстояние до какой-нибудь доступной точки. Это расстояние называется базисом. Угол, под которым из недоступного места виден базис, называют параллаксом . Горизонтальным параллаксом называют угол, под которым с планеты виден радиус Земли, перпендикулярный лучу зрения.

p² – параллакс, r² – угловой радиус, R – радиус Земли, r – радиус светила.

Радиолокационный метод. Он заключается в том, что на небесное тело посылают мощный кратковременный им­пульс, а затем принимают отраженный сигнал. Скорость распространения радиоволн равна скорости света в вакууме: известна. Поэтому если точно измерить время, которое потребовалось сигналу, чтобы дойти до небесного тела и возвратиться обратно, то легко вычислить искомое расстояние.

Радиолокационные наблюдения позволяют с большой точностью определять расстояния до небесных тел Солнечной системы. Этим методом уточнены расстояния до Луны, Венеры, Меркурия, Марса, Юпитера.

Лазерная локация Луны. Вскоре после изобретения мощных источников светового излучения — оптических квантовых генераторов (лазеров) — стали проводиться опыты по лазерной локации Луны. Метод лазерной локации анало­гичен радиолокации, однако точность измерения значи­тельно выше. Оптическая локация дает возможность опреде­лить расстояние между выбранными точками лунной и зем­ной поверхности с точностью до сантиметров.

Для определения размеров Земли определяют расстояние между двумя пунктами, расположенными на одном меридиане, затем длину дуги l , соответствующей 1° -n .

Для определения размеров тел Солнечной системы можно измерить угол, под которым они видны земному наблюдателю – угловой радиус светила r и расстояние до светила D.

R=D sin r.

Учитывая p0 – горизонтальный параллакс светила и, что углы p0 и r малы,

    Определение светимости звезды на основе данных о ее размерах и температуре.

L – светимость (Lc = 1)

К-во Просмотров: 875
Бесплатно скачать Шпаргалка: Билеты по астрономии, 11 класс