Шпаргалка: Геоботаника как наука
К комменсализму можно отнести взаимоотношения между растениями и не фиксирующими атмосферный азот ризосферными бактериями; с водорослями, грибами, лишайниками и мхами, поселяющимися на коре деревьев; с птицами и летучими мышами, поселяющимися в дуплах, и др. Так, к примеру, поселяясь на ветвях и стволах деревьев и образуя сомкнутые покровы, эпифиты способны изменять температурный режим, химизм и влажность коры, причем в ряде случаев этим они могут создавать благоприятные условия для различных паразитов и фитофагов. Поглощая воду, стекающую по ветвям и стволам, они уменьшают ее поступление в почву и препятствуют использованию деревьями вымытых из их крон веществ. Поселяясь на зеленых стеблях и листьях, особенно в тропиках, эпифиты снижают способность растений к фотосинтезу.
Эксперимент Г. Элленберга (1952). Аутэкологические и синэкологические ареалы и оптимумы растений. Примеры. Причины несовпадения аут- и синэкологических оптимумов вида растения.
Аутэкологические оптимум и амплитуда могут быть установлены только в эксперименте с чистыми одновидовыми посевами при оптимальных для исследуемого вида значениях всех остальных экологических факторов. Синэкологические оптимум и амплитуда выявляются на основе наблюдений в естественных условиях с охватом всех типов местообитаний исследуемого вида.
Аут- и синэкологические оптимумы и амплитуды обычно не совпадают (рис. 4), и причины этого могут быть различными. Так, оптимальные для вида значения какого-либо фактора могут различаться в зависимости от выраженности иных экологических факторов. Существенно влияет на синэкологическую амплитуду и фитоценотическая обстановка. Сильные конкуренты и виды, сильно изменяющие среду, могут вытеснять более слабые виды из благоприятных для них условий местообитания, вследствие чего их синэкологическая амплитуда становится заметно уже аутэкологической (рис. 4а). Может также происходить и сдвиг синэкологического оптимума по отношению к аутэкологическому (рис. 4б). Так, несмотря на то, что овсик извилистый (Avenella flexuosa ) имеет довольно широкую экологическую амплитуду по отношению к кислотности почвы (pH от 3 до 7), в природе он встречается практически исключительно на сильнокислых почвах, так как только в таких условиях он является в достаточной степени конкурентноспособным. Как мы видим, синэкологический оптимум данного вида сильно сдвинут в сторону аутэкологического пессимума. Иногда отдельные виды могут почти полностью вытесняться из благоприятных для них условий, благодаря чему появляются два синэкологических оптимума (рис. 4в). К примеру, сосна обыкновенная (Pinus sylvestris ) имеет два синэкологических оптимума по отношению к фактору увлажнения – верховые болота и сухие песчаные почвы. Именно в этих природных условиях сосна является в достаточной степени конкурентноспособным видом и формирует коренные сосновые леса. В то же время, как показывают результаты культивирования этого вида, наиболее продуктивные сообщества формируются при посадке сосны на свежих почвах. То есть, аутэкологический оптимум данного вида лежит в условиях средних значений фактора увлажнения почвы. Не следует думать, что оптимумы всегда и значительно отличаются друг от друга. У конкурентно сильных видов и мощных эдификаторов тот и другой оптимумы обычно совпадают. Кроме того, совпадение может наблюдаться в отсутствии конкурентов при обитании в экстремальных условиях, например засоления.
Влияние совместного произрастания на морфогенез и жизненное состояние растений. Классы Крафта. Причины возникновения конкуренции между растениями.
Конкуренция – вслед за Ч. Дарвином в широком смысле – это борьба за существование: борьба за пищу, за место или за какие-либо другие условия. Даже при достаточно высоком сходстве экологических требований, растения одних видов оказываются более сильными, более конкурентомощными при одних определенных значениях факторов среды, другие – при других. Это и служит причиной победы того или другого вида в межвидовой борьбе.
Конкуренция отмечается между особями одного вида (внутривидовая борьба) и между особями разных видов (межвидовая борьба) в неблагоприятных условиях среды.
Оба типа борьбы обычно тесно связаны друг с другом. В борьбе за пищу, за влагу, с вредителями и паразитами растения конкурируют и с особями своего вида, и с особями других видов.
Сочетание в одном фитоценозе растений с различными экологическими особенностями – тенелюбивых и светолюбивых, в различной степени приспособленных к недостатку влаги и другим факторам среды, позволяет фитоценозу наиболее полно использовать условия местообитания.
Конкуренция внутри вида, значительно более интенсивна, чем между особями разных видов, но, в этом случае происходит дифференциация особей по высоте. В лесу деревья одного вида можно распределить по классам Крафта (рис. 6). Первый класс объединяет деревья хорошо развитые, поднимающиеся выше других – исключительно гос-подствующие, второй класс – господствующие, третий – согосподствующие, с развитыми, несколько сдавленными с боков, четвертый – заглушённые деревья, пятый – деревья угнетенные, отмирающие или отмершие.
Сходная картина уменьшения количества экземпляров растений (на этот раз в течение одного сезона) и дифференциации по высоте наблюдается и в фитоценозах, образованных однолетними растениями, например солеросом травянистым (Salicornia herbacea).
Флористический состав фитоценоза. Флористическое богатство и видовая насыщенность. Типология фитоценозов по количеству слагающих их видов; причины возникновения того или иного типа фитоценоза.
Флористический состав – это полная совокупность видов растений, встречающихся в пределах конкретного растительного сообщества. Флористический состав – важнейший конституционный признак, во многом определяющий структуру и функции сообщества. Это очень информативный признак, говорящий об экологических условиях, в которых находится сообщество, о его истории, степени и характере его нарушенности и т.д.
Флористический состав характеризуется рядом показателей. Первый – это видовое богатство , то есть общее количество видов, свойственное фитоценозу. Этот показатель может изменяться в пределах от 1 (монодоминантные одновидовые сообщества) до 1000 и более видов (некоторые тропические леса). По остроумному замечанию Р. Маргалефа (Margalef, 1994), видовое богатство в любом случае можно расположить между двумя крайними ситуациями: модель «Ноев ковчег» – видов очень много, но каждый представлен всего одной парой особей, и «чашка Петри» – микробиологическая культура, в которой представлено огромное число особей одного вида. Видовое богатство – это самая простая мера альфа-разнообразия, то есть биотического разнообразия на уровне фитоценоза.
При всем интересе к показателю степени видового богатства очевидно, что использование его в сравнительно-аналитических построениях во многих случаях некорректно. Так, к примеру, несравнимы в отношении видового богатства маленькое болотце и участок тропического леса. Поэтому в геоботанике гораздо чаще используется показатель видовой насыщенности – число видов, отнесенное к единице площади. Но здесь следует отметить тот факт, что для того, чтобы определить видовую насыщенность фитоценоза, необходимо в любом случае знать его видовое богатство.
Если выявлять видовое богатство с помощью вписанных друг в друга квадратных или круглых площадок увеличивающегося размера, то, как правило, с ростом площади учетной единицы будет увеличиваться число выявленных в фитоценозе видов. Если построить из полученных значений кривую, то она довольно хорошо будет отражать зависимость увеличения числа видов от размера учетной площадки. Как правило, такая кривая вначале будет резко подниматься вверх, а потом постепенно переходит на плато. Начало перехода на плато будет показывать, что на площадке данного размера уже выявлено подавляющее число видов в фитоценозе. Как правило, чем богаче видами фитоценоз, тем меньше размер площадки, при котором кривая уходит на плато.
Для того чтобы возможно полнее охарактеризовать флористический состав фитоценоза, сначала переписывают все растения, стоя в одной точке границы описываемого участка. После того как будут отмечены все растения, включая и самые малозаметные, видимые из точки наблюдения, медленно передвигаются вдоль границы, записывая новые растения, еще не попавшие в список. Обойдя весь участок. делают его пересечение по диагонали, продолжая вписывать растения. Такой способ записи обеспечивает полноту списка и сохраняет описываемый участок от вытаптывания исследователем.
При однократном учете видового состава обычно нельзя получить полного списка видов, характеризующих фитоценоз. Некоторые виды имеют кратковременный период вегетации, покоясь остальную часть года в виде семян или подземных органов; другие виды поздно начинают свое развитие и не попадают в списки, составленные при весеннем описании фитоценоза. Поэтому для получения более полных сведений о флористическом составе сообщества необходимо составлять списки растений два-три раза в течение вегетационного периода.
Флористическая полночленность и неполночленность фитоценозов. Основные причины неполночленности фитоценозов. Практическая значимость выявления неполночленных фитоценозов.
Под флористически неполночленными фитоценозами он понимал сообщества, в состав которых входят не все виды растений, способные в них существовать. Раменским были выделены фитоценозы абсолютно полночленные, туземно полночленные, практически полночленные и явно неполночленные. Полночленность или неполночленность фитоценозов может быть точно установлена лишь при проведении опытов с подсевом семян видов, не входящих в их состав. Абсолютно полночленных фитоценозов в природе, вероятно, не существует, но проверить это невозможно, поскольку необходимо было бы провести подсев всех видов растений, способных произрастать в условиях данного экотопа. Внедрение в фитоценозы случайно занесенных человеком из других регионов растений, а также сознательное введение в естественные сообщества многих видов (например, люпина многолистного в сосновые леса) дают основание говорить о широком распространении флористически неполночленных фитоценозов.
В то же время многие давно сформировавшиеся фитоценозы являются туземно полночленными, то есть в их состав входят все виды местной флоры, способные произрастать в данных условиях. Чтобы выявить флористическую неполночленность, необходимы длительные наблюдения, так как зачастую особи вида, случайно внедрившегося или сознательно введенного экспериментатором, существуют всего 1–2 года, а затем погибают, поскольку для них среда обитания в данном фитоценозе неблагоприятна. Необходимо также принимать во внимание, что некоторые виды в определенных условиях представлены лишь особями, находящимися в состоянии покоя (жизнеспособные семена, покоящиеся подземные органы). Установленная в отношении таких видов неполночленность является, таким образом, кажущейся (так называемая ложная неполночленность или скрытая полночленность фитоценозов ). Чаще всего она является временным явлением. В этом случае покоящиеся особи переходят в активное состояние, как только для этого создаются благоприятные условия. Подобное иногда происходит периодически или эпизодически, а иногда – лишь при сплошном или локальном нарушении фитоценоза в результате сильного отклонения от средних метеорологических и гидрологических условий, а также при массовом размножении землероев.
Можно различать первичную и вторичную, или антропически обусловленную неполночленность. Первичная неполночленность фитоценоза возникает при его формировании и постепенно ликвидируется по мере развития и усложнения структуры сообщества. Примером антропически обусловленной неполночленности может быть неполночленность, связанная с отсутствием обсеменения некоторых видов растений, размножающихся исключительно семенами, при переходе от одноукосного к двуукосному использованию лугов. Стоит отметить, что отсутствие обсеменения растений может происходить как без изменения экотопических условий (при сенокосном использовании), так и при их изменении (например, при выпасе скота).
Флористическая неполночленность фитоценозов может иметь большое практическое значение. Так, отсутствие в фитоценозах видов, которые потенциально могут войти в их состав (или если они имеются, но потенциально могут быть в гораздо большем количестве) и тем самым повысить их продуктивность или улучшить кач. продукции, дает нам возможность внедрить их в сообщества. Примером может быть подсев семян бобовых для улучшения лугов или люпина в сосновых лесах. И наоборот, если в фитоценозах нет малоценных или вредных с точки зрения человека видов растений, способных произрастать в данных условиях, то необходимо принять меры для предотвращения внедрения таких видов в сообщество.
Экобиоморфный состав фитоценозов. Понятие «жизненная форма». Системы жизненных форм К. Раункиера. Физиономическая классификация жизненных форм растений. Факторы, определяющие количественный состав экобиоморф растительных сообществ.
Эффективное использ‑е ресурсов среды и нормальное развитие растений обеспечивается их морфологическим и анатомическим строением, специфическими физиологическими и биохимическими процессами, адекватными экологической обстановке. Жизненная форма растения – это его внешний облик, комплекс морфологических, анатомических и физиологических признаков, отражающий приспособленность вида к условиям среды. В сходных условиях среды организмы даже из систематически далеких групп могут иметь сходную жизненную форму (например, суккулентные кактусы и молочаи, растения-подушки из бобовых, сложноцветных, гвоздичных, зонтичных и др.). Термин «Жизненная форма» был предложен в 1884 г. датским ботаником Э. Вармингом. «отцом» современной системы жизненных форм считается датский ботаник К. Раункиер. В 1905 году им была предложена система жизненных форм, которая сыграла в экологии растений не меньшую роль, чем работы К. Линнея в области систематики растений. Раункиер выделил 5 основных типов жизненных форм, многие из которых, в свою очередь, подразделены на подтипы (рис. 22).
1. Фанерофиты – растения, у которых почки и концевые побеги, предназначенные для переживания неблагоприятного периода, расположены высоко над землей. Этот тип разделяется на 15 подтипов, и включает в себя деревья, кустарники и лианы. Подразделение на подтипы осуществляется в зависимости от размера (мега-, мезо-, микро-, ?