Шпаргалка: Интеллектуальные информационные системы
После предварительного определения контуров разрабатываемой экспертной системы инженеры по знаниям совместно с экспертами осуществляют более детальную постановку проблем и параметризацию системы. К основным параметрам проблемной области относятся следующие:
- класс решаемых задач (интерпретация, диагностика, коррекция, прогнозирование, планирование, проектирование, мониторинг, управление);
- критерии эффективности результатов решения задач (минимизация использования ресурсов, повышение качества продукции и обслуживания, ускорение оборачиваемости капитала и т.д.);
- критерии эффективности процесса решения задач (повышение точности принимаемых решений, учет большего числа факторов, просчет большего числа альтернативных вариантов, адаптивность к изменениям проблемной области и информационных потребностей пользователей, сокращение сроков принятия решений);
- цели решаемых задач (выбор из альтернатив, например, выбор поставщика или синтез значения, например, распределение бюджета по статьям);
- подцели (разбиение задачи на подзадачи, для каждой из которых определяется своя цель);
- исходные данные (совокупность используемых факторов);
- особенности используемых знаний (детерминированность/ неопределенность, статичность/динамичность, одноцелевая/ многоцелевая направленность, единственность/ множественность источников знаний).
10. Формализация базы знаний
На этапе формализации базы знаний осуществляется выбор метода представления знаний. В рамках выбранного формализма осуществляется проектирование логической структуры базы знаний.
Этап формализации базы знаний - выбор метода представления знаний, в рамках которого проектируется логическая структура базы знаний.
Логическая модель предполагает унифицированное описание объектов и действий в виде предикатов первого порядка.
Логическая модель отражает логические связи между элементами данных вне зависимости от их содержания и среде хранения.
Логическая модель данных может быть реляционной, иерархической или сетевой. Пользователям выделяются подмножества этой логической модели, называемые внешними моделями, отражающие их представления о предметной области. Внешняя модель соответствует представлениям, которые пользователи получают на основе логической модели, в то время как концептуальные требования отражают представления, которые пользователи первоначально желали иметь и которые легли в основу разработки концептуальной модели. Логическая модель отображается в физическую память, такую, как диск, лента или какой-либо другой носитель информации.
11. Этапы проектирования экспертной системы
Этапы создания экспертных систем: идентификация, концептуализация, формализация, реализация, тестирование, внедрение. На начальных этапах идентификации и концептуализации, связанных с определением контуров будущей системы, инженер по знаниям выступает в роли ученика, а эксперт - в роли учителя, мастера. На заключительных этапах реализации и тестирования инженер по знаниям демонстрирует результаты разработки, адекватность которых проблемной области оценивает эксперт. На этапе тестирования это могут быть совершенно другие эксперты. На этапе тестирования созданные экспертные системы оцениваются с позиции двух основных групп критериев: точности и полезности. Следующий этап жизненного цикла экспертной системы - внедрение и опытная эксплуатация в массовом порядке без непосредственного контроля со стороны разработчиков и переход от тестовых примеров к решению реальных задач. Важнейшим критерием оценки становятся соотношение стоимости системы и ее эффективности. На этом этапе осуществляется сбор критических замечаний и внесение необходимых изменений. В результате опытной эксплуатации может потребоваться разработка новых специализированных версий, учитывающих особенности проблемных областей. На всех этапах разработки инженер по знаниям играет активную роль, а эксперт - пассивную. По мере развития самообучающихся свойств экспертных систем роль инженера по знаниям уменьшается, а активное поведение заинтересованного в эффективной работе экспертной системы пользователя-эксперта возрастает.
Прототип экспертной системы - это расширяемая (изменяемая) на каждом последующем этапе версия базы знаний с возможной модификацией программных механизмов. После каждого этапа возможны итеративные возвраты на уже выполненные этапы проектирования, что способствует постепенному проникновению инженера по знаниям в глубину решаемых проблем, эффективности использования выделенных ресурсов, сокращению времени разработки, постоянному улучшению компетентности и производительности системы. Пример разработки экспертной системы гарантирования (страхования) коммерческих займов CLUES (loan-uderwriting expert systems).
12. Генетические алгоритмы и моделирование биологической эволюции
Генетические Алгоритмы (ГА) – это адаптивные методы функциональной оптимизации, основанные на компьютерном имитационном моделировании биологической эволюции. Основные принципы ГА были сформулированы Голландом (Holland, 1975), и хорошо описаны во многих работах и на ряде сайтов в Internet.
Теория Дарвина традиционно моделируется в ГА, хотя, конечно, это не исключает возможности моделирования и других теорий эволюции в ГА.
В основе модели эволюции Дарвина лежат случайные изменения отдельных материальных элементов живого организма при переходе от поколения к поколению. Целесообразные изменения, которые облегчают выживание и производство потомков в данной конкретной внешней среде, сохраняются и передаются потомству, т.е. наследуются. Особи, не имеющие соответствующих приспособлений, погибают, не оставив потомства или оставив его меньше, чем приспособленные (считается, что количество потомства пропорционально степени приспособленности). Поэтому в результате естественного отбора возникает популяция из наиболее приспособленных особей, которая может стать основой нового вида, каждый конкретный генетический алгоритм представляют имитационную модель некоторой определенной теории биологической эволюции или ее варианта.
Работа ГА представляет собой итерационный процесс, который продолжается до тех пор, пока поколения не перестанут существенно отличаться друг от друга, или не пройдет заданное количество поколений или заданное время. Для каждого поколения реализуются отбор, кроссовер (скрещивание) и мутация.
13. Этап концептуализации проблемной области - построение концептуальной модели, отражающей в целостном виде сущность функционирования проблемной области на объектном (структурном), функциональном (операционном), поведенческом (динамическом) уровнях
На этапе построения концептуальной модели создается целостное и системное описание используемых знаний, отражающее сущность функционирования проблемной области. От качества построения концептуальной модели проблемной области во многом зависит насколько часто в дальнейшем по мере развития проекта будет выполняться перепроектирование базы знаний. Хорошая концептуальная модель может только уточняться (детализироваться или упрощаться), но не перестраиваться.
Результат концептуализации проблемной области обычно фиксируется в виде наглядных графических схем на объектном, функциональном и поведенческом уровнях моделирования:
- объектная модель описывает структуру предметной области как совокупности взаимосвязанных объектов;
- функциональная модель отражает действия и преобразования над объектами;
- поведенческая модель рассматривает взаимодействия объектов во временном аспекте.
Первые две модели описывают статические аспекты функционирования проблемной области, а третья модель - динамику изменения ее состояний. Естественно, что для различных классов задач могут требоваться разные виды моделей, а следовательно, и ориентированные на них методы представления знаний. Рассмотрим каждую из представленных видов моделей.
Объектная модель - отражение на семантическом уровне фактуального знания о классах объектов, их свойств и отношений.
Концептуальное проектирование - сбор, анализ и редактирование требований к данным. Для этого осуществляются следующие мероприятия: