Статья: Альтернативные виды топлива
Отбивающие поверхности могут быть выпуклыми, плоскими и вогнутыми. Лучшим в энергетическом отношении является вогнутый отражатель в виде лунки. Гидродинамический излучатель работает под давлением жидкости, которая создается насосной станцией.
Гидродинамический излучатель имеет входной 4 и выходной 5 штуцер (рис. 2), причем диаметр выходного штуцера 1,5-2,0 раза больше входного (рис. 2).
Гидродинамический излучатель состоит из корпуса 1, в котором расположенные сопло 2 и отражатель 3, регулировочного устройства 6 и завихрителя потока жидкости 7.С помощью механизма регуляции 6 можно изменять величину зазора между соплом и отражателем излучателя.
Излучатель настраивается установкой определенного зазора между соплом и отражателем. Оптимальный зазор – 2,9 мм. Контроль режима работы излучателя осуществляется с помощью специального акустического датчика (гидрофона). В большинстве случаев настраивать излучатель можно на слух по максимуму звучания акустического режима.
Гидродинамический излучатель 5 вмонтированный в нагнетающую магистраль установки (рис. 1), вход которой соединен с насосом 3 через бай-пас 4, а выход подключен трубопроводом к технологической емкости 9. На входе излучателя установлен завихритель 6 для повышения интенсивности закручивания жидкости с целью предыдущего нагрева, выполненный в виде втулки с двухзаходной внутренней резьбой.
Гидродинамическая установка работает таким образом: в режиме нагрева жидкости при включении приводного электродвигателя 1 через муфту 2 начинает работать насос 3 и всасывает жидкость из емкости 9 по магистрали 18 во всасывающую магистраль насоса 3, при этом краны 13, 15, 16 должны быть закрытыми, а краны – 14, 17 открытыми. Краном 14 регулируется предыдущее рабочее давление нагнетающей магистрали, которое контролируется манометром 11. Жидкость под давлением проходит по нагнетающей магистрали 7 и попадает в излучатель 5, где проходит нагревание жидкости. Краном 14 регулируется рабочее давление в излучателе 5.
Жидкость, которая прошла по магистрали через излучатель попадает в емкость 9, при этом кран 15 открытый. Этот режим повторяется несколько раз для нагревания жидкости до определенной температуры, которая контролируется термометром 12.
Нагретая жидкость через открытый кран 16 и магистраль подается к потребителю 10, при этом кран 16 открытый.
Предложенная установка для нагрева жидкости обеспечивает снижение расхода энергии в несколько раз, уменьшение металлоемкости и увеличение производительности оборудования и позволяет повысить качество и пищевую ценность с.х. продукции в условиях мини цехов и фермерских хозяйств.
РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ
Предлагаемая гидродинамическая установка изготовлена и апробирована в условиях агропроизводства, получены положительные результаты (см. табл.1).
Таблица 1. Сравнительная характеристика стоимости 1кв.м площади помещения обогреваемого различными топливными агрегатами (по данным Инютина С.В.)
Топливное устройство |
Энерго затраты на 1000 кв. м. |
Котел газовый КЧМ - 96 |
46200 м. куб/час |
Электрокотлы « Руснит » |
94500 кВт |
Теплогенератор |
17300кВт |
Жидкотогиивный котел КЧМ-5 с горелкой |
40320 л ДТ |
В процессе испытаний установлено, что в сравнении с классическими нагревателями (тэны, котлы и проч.) гидродинамический излучатель имеет ряд существенных преимуществ, которые обеспечивают его эффективное использование:
- при одинаковой производительности имеет на порядок меньшие габариты;
- за счет высокого КПД превращения энергии потока в энергию ультразвуковых колебаний потребляет значительно меньшую мощность на привод (1,1 кВт при производительности 2,5 м. куб/час.);
- обеспечивает гибкую регуляцию производительности (от 0 до 2,5 м. куб/час);
- не имеет движущихся частей, что обуславливает его высокую надежность в эксплуатации и высокий ресурс;
- затрата электроэнергии снижается на 20-30% в сравнении с классическими теплогенераторами. Нагрев жидкости непосредственно в объеме при ее движении, обеспечивает экологическую чистоту, исключает изменение качества состава жидкости, появление накипи и других неблагоприятных явлений в нагреваемой жидкости. Нагрев жидкости осуществляется в одном узле без применения нагревательных элементов, что обеспечивает простоту системы нагрева, эффективность и безопасность эксплуатации установки. За счет модульности конструкции и широкого типоразмера установок производительность может быть любая. Использование современной автоматики позволяет обеспечить автоматический режим работы установки и полный контроль технических параметров продукта нагрева. Потребитель получает горячую воду по заданным температурным параметрам. За счет автоматизации процесса, отпадает необходимость в постоянном обслуживающем персонале. Оборудование может монтироваться в здании потребителя и включаться в существующую систему подачи горячей воды.
Техническая характеристика установки:
принцип действия- гидродинамический;
рабочая жидкость - вода, масло, другие жидкости;