Статья: Что такое молекулярный ламаркизм
Первая глава книги названа: «Идеи Ламарка и Дарвина – две стороны одной медали». В ее начале авторы справедливо отмечают: «Революционные представления Чарлза Дарвина о естественном отборе как главной движущей силе эволюции сейчас превратились в догму. Обновление наших взглядов на эволюцию требует учета данных, полученных молекулярной генетикой, особенно – молекулярной генетикой иммунной системы». Это верно: все известные мне руководства по дарвинизму оперируют понятиями пятидесятилетней давности; а если там время от времени и используются новые термины, то не по существу.
Далее авторы напоминают: «В научной картине «внутреннего мира» клеток и молекул иммунной системы неоламаркистские представления об обратной связи генов сомы и зародышевой линии [Т.е. геномов клеток тела – соматических и геномов половых клеток. – Прим. ред.] давно занимают видное и законное место»». Тут они правы: с 1970-х гг. растет уверенность в недостаточности концепции случайных мутаций для понимания хода внутриклеточного наследственного приспособления. В частности, открытие у бактерий способности включать в свой геном дополнительный генетический материал привело к пониманию того, что случайные ненаправленные мутации вносят лишь малый вклад в явление лекарственной устойчивости – устойчивые к лекарствам штаммы бактерий возникают слишком часто и при этом сразу, а не постепенно.
И хотя именно на бактериях был в 1943 г. получен главный для неодарвинизма результат: устойчивость к антибиотикам появляется только за счет спонтанных мутаций; на тех же бактериях американский генетик Джон Кэйрнс (Cairns) в 1988 г. этот результат опроверг, показав, что среди мутаций присутствуют индуцированные, т.е. вызванные условиями опыта. Этот хорошо известный факт описан, в частности, в упомянутой выше книге М.Голубовского. Писал об этом и я (Эволюция. Часть 5)4 .
Оказалось, что в опытах 1943 г. выживали те бактерии, которые уже до начала эксперимента имели ген, обеспечивающий устойчивость к антибиотику. А в опытах Кэйрнса, кроме уже существовавших мутантов, нашлись и такие, которые возникли именно в ответ на действие нового внешнего фактора. Мутации оказались случайными, но направленными, и Кэйрнс смог лишь воскликнуть: «Поразительно, сколь малообоснованным было общепринятое мнение».
Если внимательно проанализировать первоначальные опыты, то окажется, что сама их постановка не давала возможности получить что-либо, кроме «доказательства» случайности мутаций. В частности, в них всегда использовались столь высокие концентрации ядов, что возможность физиологического приспособления бактерий практически исключалась. Хотя вроде бы ставилась цель – проверить, идет ли таковое приспособление и носит ли оно наследственный характер. Когда же смертельные дозы были уменьшены до стрессовых, тут же обнаружились акты наследуемого приспособления.
Вскоре такие же результаты были получены и на более сложных организмах, причем всюду дело было действительно в физиологии, в стрессе. По этому поводу Голубовский в своей книге пишет: «Как будто клетки в условиях жесткого стресса, не делясь (!), вели генетический поиск и адаптивно меняли свой геном».
О генетическом поиске мы поговорим позже – в п. 8 (и узнаем, что он в самом деле способен идти в неделящейся клетке), а сейчас обращу ваше внимание на стресс: одним из самых важных достижений эволюционизма последнего полувека стало понимание того, что клетка в состоянии стресса способна изменять то, что в обычных условиях неизменно, – свою генетическую информацию. Или, в терминах Стила с соавторами, преодолевать барьер Вейсмана.
Тут я должен предупредить читателей: при чтении книги австралийских иммунологов остается непонятным, зачем вообще опыты Кэйрнса были нужны, и в чем состоит спор, поскольку авторы уверяют, что у одноклеточных барьера Вейсмана нет. И огорошивают читателя: «А что же с растениями? У них нет барьера Вейсмана, отделяющего сому от зародышевой линии. Приобретенные соматические модификации растений, связанные с изменениями генов, могут, в принципе передаваться потомству ... Итак, это уже не секрет: эволюция по Ламарку была и есть, это факт из жизни растений!»
Позвольте, если дело обстоит так, то растениям надо бы посвятить основную часть книги, а не этот единственный абзац. Если бы «барьер Вейсмана» существовал лишь у животных, то весь неодарвинизм был бы учением об особенностях эволюции животных. На самом деле авторы спутали учение Вейсмана о зародышевой плазме с теорией зародышевого пути. Такового пути у растений и губок действительно нет5. К сожалению, подобных несуразностей в книге довольно много.
Главную же мысль первой главы книги «Что, если Ламарк прав?» можно выразить так: дарвинизм признает только случайную, ни от чего не зависящую изменчивость, а ламаркизм утверждает, что «генетическая изменчивость возникает одновременно с отбором». В этом авторы правы. Однако, по их мнению, данный феномен «легко объясняет, почему некоторые виды смогли очень быстро генетически измениться при внезапных изменениях среды, во время катастроф; также легко объяснить быстрое создание разных пород домашних животных». Нет, до объяснения тут еще далеко: не указан способ (механизм) приобретения наследственных изменений. Однако и о пути их наследования вполне стоит поговорить.
4. Вейсман против Вейсмана
Впервые Э.Стил выступил со своей эволюционной концепцией еще в 1979 г. (см. статью Е.Ароновой) и начал тогда с анализа «центральной догмы молекулярной биологии». Это утверждение первоначально (1958 г.) записывалось так:
ДНК - -> ДНК - -> РНК - -> белок
и гласило, что белок синтезируется только на РНК-вой матрице, РНК – только на ДНК-вой, а ДНК реплицирует саму себя. Однако вскоре (1970 г.) оказалось, что на РНК-вой матрице может синтезироваться ДНК – это явление называется обратной транскрипцией. Кроме того (это было ясно давно), синтез нуклеиновых кислот требует, кроме полинуклеотидной матрицы, еще и участия белков. Пусть матрицей белок и не служит, но изменение белковых текстов способно повлечь изменение текстов и ДНК, и РНК, и самих белков.
Вдобавок, в 1982 г., Ф.Альт и Д.Балтимор открыли нематричный синтез ДНК: в ходе синтеза гена, кодирующего антитело, идет сшивка фрагментов прежних генов, причем в точке сшивки в текст ДНК встраивается небольшой (кодирующий до восьми аминокислот) фрагмент, ни в какой матрице не хранимый, а синтезируемый и встраиваемый ферментативно. Насколько сейчас известно, для работы антитела информативна только длина этой вставки (а не состав ее!), но нам важнее то, что данная генетическая информация взята не из генетического текста, а из функционального состояния ферментативной системы. В этом смысле она перенесена с белков на ДНК и означает переход: белок - -> ДНК.
Затем появились и другие примеры нарушения «центральной догмы», и в возникшей по этому поводу дискуссии6 мы видим традиционные взаимные упреки в неверном понимании самой догмы. Так, ее сторонник сетует на приемы «бесчестной компрометации», когда «тезису, который надо скомпрометировать, преднамеренно приписывают формально схожее, но на самом деле умышленно ложное и весьма часто расширительное утверждение». А противник догмы утверждает прямо противоположное: «Под давлением фактов начался отход от позиции «барьера Вейсмана». Однако прямо признаться в этом сторонники гипотезы Вейсмана не желали и стали менять формулировки, лишь бы сохранить на словах саму эту гипотезу».
Обвиняя друг друга в сознательном обмане, добиться успеха невозможно. Поскольку всякий ученый считает себя правым вполне искренне, то надо стараться друг друга понять. Да, подмена понятий при обсуждении центральной догмы имеет место, но со стороны как ее защитников, так и противников. Обе стороны признают, что догма верна в ее самом узком смысле – в смысле отсутствия «обратной трансляции»: белок не служит матрицей для нуклеиновой кислоты. Далее обе же стороны согласны в отрицании догмы в ее самом широком смысле – как запрет влияния белков на синтез нуклеиновых кислот. Однако если сторонники догмы делают из этих двух утверждений вывод, что догма истинна, то противники – что она ложна. Учтя сказанное, мы примем такую позицию: догма в самом узком смысле верна, но неинтересна, поэтому надо выяснить, в каком смысле, в какой мере и какими конкретными механизмами осуществляется влияние белков (точнее, всей физиологии клетки) на генетические тексты. Для понимания эволюции нужно это, а не взаимные упреки.
Обсуждению нынешнего состояния центральной догмы посвящена, в частности, упомянутая подборка статей в журнале «Химия и жизнь» за 2003 г. Четыре из пяти опубликованных работ убеждают читателя, что от центральной догмы мало что осталось, а автор еще одной уверен, что ставить опыты нет нужды, ибо приобретенные признаки не могут наследоваться в принципе.
С того утверждения, что центральная догма являет собой молекулярную формулировку запрета наследования приобретенных признаков, и начал в 1979 г. свою работу Э.Стил. Его исходная мысль была парадоксальна: хотя «центральная догма» ничем не доказана и препятствует пониманию эволюции, но путь к новой теории лежит именно через уяснение сути этой догмы. А поскольку она – молекулярный аналог идеи зародышевой плазмы Вейсмана, то начать надо с анализа его учения. «Моя точка зрения такова: основной блок любого понимания наследования приобретенных признаков можно найти прямо в доктрине Вейсмана», – заявлял тогда Стил.
В самом деле, Вейсман сам был вынужден отказаться от крайних своих утверждений. В 1892 г. он писал: «Корень наследственных изменений должен лежать глубже [чем в слиянии родительских половых клеток. – Ю.Ч.] и заключаться в прямом воздействии внешних влияний на биофоры [единицы наследственности – Ю.Ч.]». В чем же состоит такое воздействие? Этого, разумеется, Вейсман не знал и, в стиле натурфилософов прошлого, написал: «Начало изменения основывается на малых неправильностях в питании зародышевой плазмы». Тут-то Стил и смог дать радикальное уточнение, невозможное в дни Вейсмана: «питание» наследственного материала состоит в усвоении им генетического материала некоторых вирусов.
Конечно, сводить эволюцию, даже только приспособительную, к одному лишь наследованию приобретенных признаков наивно, зато такое сужение задачи позволило Стилу сразу вчерне решить ее. По его мнению, зародышевая плазма действительно играет ведущую роль в эволюции, поскольку ее фрагменты передаются между органами и организмами с помощью вирусов. Тем самым, вирусы, по крайней мере некоторые их формы, например ретровирусы (вирусы, РНК которых передает свою информацию в хромосому организма путем обратной транскрипции), являются не только и даже не столько причиной болезней, сколько необходимым эволюционным агентом.
Главная мысль новой книги Стила с соавторами проста и убедительна: синтез антител есть создание новой генетической информации, не сводимое к случайным ненаправленным вариациям «по Дарвину», причем нужный ген формируется целенаправленно. Тем самым феномен приобретенного пожизненного иммунитета выступает как несомненный факт наследования приобретенного признака, причем наследование происходит путем включения вновь найденного гена, кодирующего антитело, в хромосомы клеток иммунной памяти, из которых при надобности вновь производятся клетки, способные производить антитела.
Исходя из этого факта делается правдоподобное допущение: эволюционно значимая информация может передаваться из хромосом стволовых клеток лимфоидной системы в хромосомы стволовых клеток половой железы. А осуществляют эту передачу, по Стилу, ретровирусы. Это допущение еще предстоит проверить. Пока же поговорим о механизме приобретения новой генетической информации в ходе иммуногенеза и подумаем, что это дает для понимания эволюции.
5. Генетический принцип обеспечения разнообразия антител
У зародыша млекопитающих есть совсем немного генов, кодирующих иммуноглобулины, – около сотни. Их последующее разнообразие в ходе развития организма каждый раз создается заново, точно так же, как заново создается любой орган. Создается оно путем комбинирования фрагментов существующих генов. Но этого разнообразия оказывается мало, поэтому конкретное антитело обычно не выбирается из наличных, а создается в ответ на конкретную заразу (на антиген). Процесс идет так.
В стрессовой ситуации, которую создает вторжение антигена, включается механизм перестройки генов иммуноглобулинов: генетическая система по каким-то не вполне еще понятным правилам режет и сшивает фрагменты генов до тех пор, пока не найдет приемлемый вариант – тот, что синтезирует антитело, которое реагирует с вторгшимся антигеном. Найденный вариант клонируется (т.е. размножается из единственного родоначального экземпляра).
За открытие этого механизма иммунолог из Японии Сусуму Тонегава получил в 1987 г. Нобелевскую премию (работа начата в Швейцарии, а завершена в США). Суть открытия в том, что ген может быть переделан в цитоплазме.
Указанный механизм рекомбинаций поставляет антитела, связывающие антигены довольно слабо. Для улучшения их «качества», для тонкой подстройки, осуществляется следующий этап, соматический (т.е. не связанный с размножением), – гипермутагенез. Включаясь после создания нужной комбинации фрагментов он осуществляет превращение «черновой болванки» в «готовое изделие».
Гипермутагенез заключается в том, что при клонировании гены «болванки» (первично найденного варианта) мутируют с огромной частотой (каждый тысячный нуклеотид заменяется, тогда как обычно точковый мутагенез в 100 миллионов раз менее интенсивен), а потом с их копий синтезируется масса чуть отличных друг от друга белковых цепей (рис. 1) антител, какое-то из которых оказывается подогнанным к антигену наилучшим образом. Этот окончательный вариант снова клонируется и запоминается клетками иммунной памяти, т.е. наследуется на время жизни особи (возникает приобретенный иммунитет).
Рис. 1. Избирательность гипермутагенеза (эффект Ву–Кэбота), которую установили в 1970 г. Тай Тэ Ву и Элвин Кэбот на легкой цепи одного из иммуноглобулинов мыши. (По Ройт и др., 2000.) Сходная картина получена и на других объектах. Вверху: 7 фрагментов белка с удачными заменами аминокислот. (Цифры справа – число необходимых для этого замен нуклеотидов.) Внизу: частота наблюдавшихся в опыте замен аминокислот