Статья: Десять в минус девятой

***

Увидеть нанометр

АСМ и СТМ - частные случаи так называемой сканирующей зондовой микроскопии, очень мощного исследовательского инструмента, позволяющего изучать различные свойства поверхностей, а не только рельеф. Все определяется тем, что использовать в качестве зонда. Скажем, с помощью проводящей иглы можно изучать локальные диэлектрические свойства поверхности с нанометровой точностью - это электросиловая микроскопия (ЭСМ). С помощью ферромагнитного зонда можно изучать распределение магнитного поля в нанометровых масштабах (МСМ, магнитно-силовая микроскопия).

Один из самых интересных и экзотических вариантов зондовой микроскопии - сканирующая ближнепольная оптическая микроскопия СБОМ), разработанная сотрудником Исследовательского центра IBM в Цюрихе Дитером Полем. В качестве зонда при этом используется диафрагма диаметром в несколько нанометров. Свет с длиной волны в сотни нанометров способен проникать через такую субволновую диафрагму согласно законам квантовой механики, но на небольшое расстояние, сравнимое с диаметром отверстия (это так называемое ближнее поле). Если разместить там образец, отраженный от него свет можно зарегистрировать. При этом получается настоящее изображение поверхности в видимом свете, зависящее от ее локальных оптических свойств, причем с нанометровым разрешением!

***

АТОМНО-СИЛОВОЙ МИКРОСКОП

У СТМ есть одно важное ограничение: объектом исследования могут быть только металлы или полупроводники (напомним, что эффект основан на туннельном токе). Диэлектрики в СТМ "рассмотреть" не получится. Для их исследования разработчиками СТМ был предложен другой метод, названный сканирующей атомно-силовой микроскопией. Принцип его работы заключается в том, что на малых расстояниях между зондом и образцом действует сила, величина и направление которой зависят от зазора. Эту силу измеряют, закрепляя иглу зонда на упругом консольном подвесе (кантилевере) и определяя ее отклонение. С помощью атомно-силовой микроскопии можно изучать любые поверхности - независимо от того, являются ли они проводниками или диэлектриками.

Одно из важных преимуществ атомно-силового микроскопа (АСМ) - возможность его применения при исследованиях биологических образцов: он не требует вакуума или тонких слоев (в отличие от электронного микроскопа). АСМ также позволяет изучать не только рельеф поверхности, но и взаимодействие между конкретными молекулярными объектами - достаточно "закрепить" на острие зонда одну из изучаемых молекул. Однако АСМ сильно уступает СТМ по разрешению (порядка единиц нанометров) из-за сильных тепловых шумов, влияющих на измерения.

***

СКАНИРУЮЩИЙ ЭЛЕКТРОННЫЙ МИКРОСКОП

Если не просвечивать образец, а сканировать его поверхность сфокусированным в очень маленькое пятно (несколько нанометров) пучком электронов, последние не только рассеиваются на атомах образца, но и порождают вторичные электроны, рентгеновское и видимое излучение. На регистрации этих данных основана работа сканирующего электронного микроскопа. В отличие от просвечивающего ЭМ, с его помощью можно исследовать "толстые" образцы. Регистрируя углы рассеяния, интенсивность излучения и энергии вторичных электронов, можно изучать не только рельеф поверхности, но и химический состав образца, а также структуру образца в приповерхностном слое (десятки и сотни нанометров). Разрешение сканирующего электронного микроскопа обычно несколько меньше, чем у просвечивающего, и составляет от единиц до десятков нанометров.

Список литературы

Популярная механика № 4 (78) апрель 2009

К-во Просмотров: 163
Бесплатно скачать Статья: Десять в минус девятой