Статья: Доказательство великой теоремы Ферма 5

Великая теорема Ферма формулируется следующим образом: диофантово уравнение (http://soluvel.okis.ru/evrika.html):

А n + В n = С n /1/

где n - целое положительное число, большее двух, не имеет решения в целых положительных числах.

Суть Великой теоремы Ферма не изменится, если уравнение /1/ запишем следующим образом:

А n = С n - В n /2/

Рассмотрим решения уравнений /1/ и /2/ при нечетных значениях показателя степени n ипри любых четных значениях показателя степени n .

Вариант 1: показатель степени n - нечетное число

Путем алгебраического преобразования уравнения /1/, методика которого здесь не приводится, получим следующее уравнение в общем виде:

Cn = An + Bn = (A+B)n - n∙ AB∙(A+B)∙N, /3/

где N – всегда целое число, равное:

N=[(A+B)n –(An +Bn )]/n∙AB(A+B) /4/

Отсюда: Cn = An + Bn = (A+B)[ (A+B)n-1 - n∙ AB∙N]; /5/

Cn = An + Bn = (A+B)n [ 1 - n∙ AB∙N/(A+B)n-1 ] /6/

Обозначим: 1 - n∙ AB∙N/(A+B)n-1 =R

Тогда уравнение /6/ запишется следующим образом:

Cn = An + Bn = (A+B)n · R /7/

Значения числа Cn , определенные по формулам /5/, /6/ и /7/, равные между собой целые числа, так как эти формулы эквивалентны. Однако очевидно, что число R – дробное число < 1. Из формулы /7/ следует:

C = = ( A + B )∙ /8/

Поскольку число - дробное иррациональное число <1, то число C – дробное число.

Следовательно, великая теорема Ферма не имеет решения при нечетных показателях степени n .

Вариант 2: показатель степени n любое четное число

В этом случае путем алгебраического преобразования уравнения /2/ с помощью метода, который здесь также не приводится, получим следующее уравнение:

An = Cn – Bn =(C + B)n ∙[ 1 - B∙N/(C +B)n-1 ], /9/

где N - целое число, равное:

N= [(C+B)n – (Cn – Bn )]/B∙(C+B).

Очевидно, что: 1 - B N /( C + B ) n -1 = R - дробное число <1.

Уравнение /9/ в этом случае будет иметь вид:

An = Cn Bn =( C + B ) n R

А число A будет равно:

A =( C + B )∙

Поскольку число - дробное иррациональное число <1, то число A – дробное число. Поэтому и при четных показателях степени n великая теорема Ферма не имеет решения в целых положительных числах.

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 106
Бесплатно скачать Статья: Доказательство великой теоремы Ферма 5