Статья: Две замечательные теоремы планиметрии
В
Н1
Н2
С1
А1 Н3
А С В1
рисунок 2
Мы получили три пары подобных прямоугольных треугольников А Н1С1 и В Н2С2, В Н2А1 и С Н3 А1, С Н3B1 и А Н1 B1.
(У первых двух пар равны верти-
кальные углы при вершинах С1 и А1 соответственно, у третьей пары общий угол с вершиной B1). Запишем отношения, вытекающие из этих подобий:
; ; .
Легко заметить, что произведение левых частей трех этих равенств равно единице. Отсюда следует, что произведение правых частей также равно единице. Что и соответствует утверждению (*).
Обратное утверждение удобно доказать методом “ от противного “: предположим, что имеет место равенство (*), но точки А1, B1 и С1 не лежат на одной прямой. Тогда прямая А1B1 пересекает прямую АВ в какой-то точке С2, отличной от точки С1. В силу прямой теоремы для С2 имеет место формула (*), откуда для отрезков АС2 и С2В имеет место равенство: в силу предположения, то же равенство выполняется и для отрезков АС1 и С1В:
.
Таким образом, точки С1 и С2 делят отрезок АВ в одном и том же отношении. Отсюда вытекает интуитивно ясное (хотя и не столь очевидно доказуемое) противоречие: нет двух различных точек, делящих один и тот же отрезок в одном и том же отношении(грубо говоря, у одного отрезка не может быть двух различных середин).
Доказательство для случая, соответствующего рис.1 б) аналогично.
Теорема Чевы.
Пусть в треугольнике АВС точка А1О ВС, точка В1О АС, точка С1 О АВ. Прямые АА1, ВВ1 и СС1 пересекаются в одной точке тогда и только тогда, когда выполняется соотношение:
(**)
На рис.3 а) и б) показаны различные возможные варианты расположения точек на прямых АВ, АС и ВС.
В
С1
А1
О
А
В1
С
рисунок 3 а)
Доказательство: (прямая теорема)