Статья: Экологические последствия структурно-вещественных преобразований отвальных пород терриконов
Терриконы являются неотъемлемой частью ландшафта больших и малых городов Донбасса. Только в Донецке их количество по разным источникам составляет от 120 до 138. Около 100 породных отвалов являются недействующими, из них только 25 считаются горящими. Из 32 действующих породных отвалов 28 – горящие. Высота породных отвалов Донецка колеблется в пределах от 8 м до 126, 6 м.
Породы, идущие в отвал, образуются за счет проходки выработок (52%) и их ремонта (48%). Такие "пустые" породы складируются вблизи стволов шахт в виде терриконов высотой до 60—80 м и отвалов хребтовой формы (в сумме 92%), реже — плоских отвалов (8%). Средний литологический состав отвалов отражает состав угленосной толщи. Это ар¬гиллиты (60—80%), алевролиты (10—30%), песчаники (4—10%), изве¬стняки (редко до 6%, обычно меньше), а также значительные примеси угля (6—20%). Кроме того, отвалы содержат существенную долю техно¬генных материалов — деревянной крепи, металлических изделий, проводов и пр. При отсыпке отвалов происходит гравитационная сегрегация породы, т.е. разделение отсыпаемых пород по размерам обломков и удельному весу. При этом крупные и тяжелые обломки концентрируются у подножья отвалов, а углистое вещество распределяется неравномерно. Наименьшую зольность имеют породы в средней по высоте части отвала, к вершине и основанию она повышается. Отвальная масса изученных шахтных терриконов имеет зольность в пределах 57-99%, составляя в среднем 88, 5%. Влажность изменяется от 0, 2% до 11, 7%, составляя в среднем 3, 4%. Содержание общей серы в отвалах колеблется от 0, 01% до 10, 9%. В составе общей серы преобладает сера сульфидная (84%) [1].
Попадая в терриконы, породы карбона испытывают значительные преобразования. Это связано с процессами выветривания, когда скальные, прочные породы разрушаются и превращаются в полурыхлые и рыхлые. Выветривание пород сопровождается изменением их минерального и химического состава. Значительная часть компонентов пород выщелачивается водными растворами и мигрирует в окружающую среду, локализуясь на различных барьерах в почво-грунтах, растительном покрове, в грунтах зоны аэрации и в водовмещающих породах.
Наряду с выветриванием, которое распространено во внешней части терриконов, внутри них создаются благоприятные условия для окисления и последующего возгорания. Ведущая роль при этом принадлежит деятельности микроорганизмов. Окисление сульфидной серы осуществляется тионовыми бактериями. Они представляют собой обычно автотрофные микроорганизмы, использующие свободную СО2 на построении своего тела и получающие энергию при окислении серы и ее восстановленных продуктов. Изучение условий развития микроорганизмов в зонах окисления сульфидных месторождений установило их устойчивость при температурах от 2 до 70о С, рН среды – от 1 до 8 [2]. При этом развитие бактерий протекает в условиях высокой влажности породной массы. Эти данные показывают, что микроорганизмы устойчивы в условиях кислой среды, так как при окислении сульфидов образуется серная кислота, однако не переносят высокие температуры. Поэтому микроорганизмы начинают процесс окисления, который сопровождается выделением тепла, и разогревают определенную зону, а собственно горение может протекать внутри террикона в благоприятных условиях при доступе достаточного количества кислорода, когда происходит возгорание органической части угля.
В подтверждение этих выводов говорит тот факт, что в пределах краевых частей терриконов существуют локальные очаги окисления, где существенного повышения температуры не отмечается, однако наблюдается выделение парообразной серной кислоты и налеты новообразованной сульфатной минерализации.
Окисление и горение пород сопровождается выбросами широкого спектра летучих компонентов, которые выделяются из породной массы, обогащенной углистым веществом. Основным компонентом выбросов является водяной пар, который образуется при испарении и возгонке попадающих в зону горения атмосферных осадков, а также при высвобождении поровой и связанной воды минералов и пород. Вода является минералообразующей средой для большей части новообразованных минералов: сульфатов, гидрокарбонатов, карбонатов, фосфатов, арсенатов и др. Горящие терриконы выделяют пары, в которых кроме воды содержаться: серная кислота (сульфат-ион), углекислота, двуокись азота (нитрат-ион). При недостатке кислорода в очагах горения в парогазовых выбросах содержаться сероводород, углеводороды, аммиак, оксид углерода. В верхних частях терриконов, куда проникают обогащенные кислородом инфильтрогенные воды, горение протекает в условиях избытка кислорода. В более глубоких зонах горения отмечается недостаток кислорода, окислительные процессы протекают в анаэробных условиях. Очаги горения являются источниками горячих минерализованных, химически-агрессивных, насыщенных микроэлементами водных флюидов. При выходе на поверхность часть компонентов флюидов, попадая в условия низких температур и обилия кислорода, выделяется в виде корочек, налетов, натечных, кристаллических, сферолитовых агрегатов новых минералов, среди которых преобладают сульфаты, сульфиды и окислы. Другая часть улетучивается в атмосферу, пополняя ее вредными веществами. Сам процесс горения и порожденные им химически агрессивные флюиды полностью преобразуют минеральный и химический состав первичной породной массы, как в очагах горения, так и по его периферии.
Вокруг очагов горения формируется своеобразная зональность, обусловленная перераспределением исходного вещественного состава. В процессе изысканий были выявлены в разных местах терриконов небольшие участки, где сохранились первичные рыхлые отвальные породы – различной формы и размеров куски аргиллитов, углистых аргиллитов, алевролитов и редко песчаников. Они выделяются по черному цвету породной массы.
Вокруг этих участков устанавливается пограничная зона замещения, проявленная в изменении первичного цвета пород до бурых, вишневых оттенков, на фоне которых развиваются сульфаты желтого цвета. Они пропитывают массу породы, образуют различные налеты, корочки, прожилки и вкрапленники.
Далее по направлению от участков первичных пород выделяется зона развития белой сульфатной минерализации, которая пропитывает окисленные кирпично-красные породы. За пределами этой зоны располагаются обширные участки окисленных пород кирпично-красного цвета без видимых признаков развития сульфатов. Мощность каждой из выделенных зон развития сульфатной минерализации зависит от размеров очага окисления и колеблется от первых десятков сантиметров до нескольких метров. Эти две зоны (желтая и белая) являются промежуточными между окисленными породами и первичными, они характеризуются неравновесными переходными условиями и контролируют процессы миграции и концентрации большей части макро- и микроэлементов (результаты лабораторных исследований проб приведены в таблицах 1, 2).
Поведение значительной части компонентов породной массы в процессе ее окисления имеет закономерный и вполне объяснимый характер. Так рост концентрации в окисленной породе по отношению к исходной устанавливается для следующих породообразующих компонентов: кремнезема (от 50, 21% до 54, 36%); глинозема (от 17, 73% до 20, 86%); Fe2O3 (от 6, 31% до 9, 43%); CaO (от 0, 93% до 1, 3%); Na2O (от 0, 93% до 1, 05%); SO3 (от 1, 93% до 3, 27%). Увеличивается почти в два раза концентрация водорастворимого (подвижного) сульфат-иона – SO42- (от 9796, 1 мг/кг до 17463, 7 мг/кг).
Табл. 1. Результаты лабораторных исследований проб
№ зоны | № пробы | Описание минералого-петрографических особенностей отходов | H2O- | ППП * | SiO2* | Fe2O3* | TiO2 * | Al2O3* | CaO* | MgO* | K2O* | Na2O* | SO3* | S* | сумма * |
1 | 15 | Исходная порода – уголь, углистые сланцы черного цвета | 1, 91 | 16, 73 | 50, 21 | 6, 31 | 0, 92 | 17, 73 | 0, 93 | 1, 55 | 2, 62 | 0, 93 | 1, 93 | 0, 04 | 99, 88 |
2 | 17 | Перегоревший кирпично-красный аргиллит с налетами желтой сульфатной минерализации | 1, 15 | 6, 34 | 53, 57 | 10, 66 | 1, 03 | 18, 43 | 1, 31 | 1, 26 | 2, 54 | 1, 1 | 3, 89 | 0, 14 | 100, 2 |
3 | 16 | Перегоревший кирпично-красный аргиллит с налетами белой сульфатной минерализации | 3, 3 | 12, 81 | 44 | 7, 4 | 0, 94 | 17, 97 | 1, 02 | 2, 7 | 2, 43 | 1, 5 | 9, 15 | 0, 16 | 100 |
4 | 14 | Выветрелые и перегоревшие аргиллиты кирпично-красного цвета | 1, 06 | 4, 71 | 54, 36 | 9, 43 | 1, 06 | 20, 86 | 1, 3 | 1, 15 | 2, 38 | 1, 05 | 3, 27 | 0, 06 | 99, 6 |
Примечания: * - Содержание в массовых долях на сухое вещество
Табл. 2. Результаты лабораторных исследований проб
№ зоны | 1 | 2 | 3 | 4 |
№ пробы | 15 | 17 | 16 | 14 |
Описание минералого-петрографических особенностей отходов | Исходная порода – уголь, углистые сланцы черного цвета | Перегоревший кирпично-красный аргиллит с налетами желтой сульфатной минерализации | Перегоревший кирпично-красный аргиллит с налетами белой сульфатной минерализации | Выветрелые и перегоревшие аргиллиты кирпично-красного цвета |
Нитраты, мг/кг | 21, 6 | 16, 2 | 0, 05 | 7 |
Сульфаты, мг/кг | 9796, 1 | 16650, 2 | 91246, 5 | 17463, 7 |
Хлориды, мг/кг | 61, 3 | 40, 5 | 41, 4 | 20, 2 |
Pb, мг/кг | 25 | 34, 3 | 17, 1 | 97, 1 |
Cd, мг/кг | 1, 9 | 2, 9 | 2, 4 | 2, 9 |
As, мг/кг | 4, 2 | 3, 8 | 1, 9 | 5, 5 |
Hg, мг/кг | 0, 06 | 0, 035 | 0, 03 | 0, 1 |
Cорг, % | 7, 71 | 0, 16 | 0, 67 | 0, 11 |
Fe2O3, % | 8, 97 | 10, 85 | 7, 54 | 9, 54 |
Al2O3, % | 19, 51 | 19, 36 | 18, 23 | 21, 1 |
Sобщ, % | 0, 49 | 1, 41 | 3, 04 | 1, 49 |
Cu, мг/кг | 50 | 33 | 71 | 48 |
Ni, мг/кг | 47 | 72 | 51 | 52 |
Cr, мг/кг | 102 | 104 | 97 | 85 |
Zn, мг/кг | 94 | 93 | 102 | 98 |
V, мг/кг | 94 | 94 | 105 | 86 |
Sn, мг/кг | 7, 2 | 4, 6 | 3, 2 | 6, 8 |
W, мг/кг | 2, 2 | 1, 8 | 1, 8 | 1, 8 |
Co, мг/кг | 18 | 15 | 24 | 22 |
Mo, мг/кг | 1, 5 | 1, 8 | 2, 2 | 2, 2 |
Mn, мг/кг | 715 | 724 | 986 | 724 |
Ag, мг/кг | 0, 03 | 0, 03 | 0, 03 | 0, 03 |
Ge, мг/кг | 1, 5 | 1, 5 | 1 | 3 |
Bi, мг/кг | 2 | 2 | 1, 5 | 2 |
Для ряда микроэлементов также отмечается рост концентрации в окисленных породах: Pb (от 25 до 97, 1 мг/кг); Cd (от 1, 9 до 2, 9 мг/кг); Hg (от 0, 06 до 0, 1 мг/кг); As (от 4, 2 до 5, 5 мг/кг).
Рост концентрации кремнезема, глинозема и окислов железа обусловлен их практически неподвижным состоянием в процессе окисления. Эти компоненты не могут переходить в высокоминерализованный водный раствор, насыщенный сульфатами, поэтому их концентрация увеличивается благодаря выносу подвижных компонентов из исходных пород при окислении или горении последних. При этом монолитные породы становятся пористыми. В переходных зонах эти поры заполняют легко растворимые водой сульфаты, гидрокарбонаты, а на удалении от очагов окисления, где вымывание этих минералов атмосферными водами опережает процессы их образования, видны пустоты различной формы. Эти пустоты образовались на месте ранее существовавших окисленных минеральных агрегатов и органического вещества. Поэтому для роста концентрации неподвижных компонентов достаточным является вынос других – подвижных компонентов. Увеличение концентрации окислов кальция и микроэлементов может быть обусловлено их выносом из промежуточных зон окисления, где отмечается падение их содержаний. Окислы натрия, серы и сульфат-ион являются подвижными, их максимальные концентрации отмечаются в промежуточной зоне развития белой сульфатной минерализации. Окисленные кирпично-красные породы уже обеднены этими компонентами за счет их вымывания атмосферными осадками.
Вынос в процессе окисления испытывают Cорг. (от 7, 71% до 0, 11%); MgO (от 1, 55% до 1, 15%); K2O (от 2, 62% до 2, 38%); H2O (от 1, 91% до 1, 06%); NO- ; Cl-. Углерод, составляющий основу органической части исходных отвальных пород, окисляется (выгорает), частично улетучивается в атмосферу в виде углекислого и угарного газов, отчасти участвует в образовании новых минералов – карбонатов и гидрокарбонатов натрия, кальция, магния, железа. Магний и калий переходят из гидрослюдистых минералов пород в подвижное состояние и мигрируют водными растворами. Вода, определяющая влажность пород и играющая главную роль в процессе окисления, по мере роста температуры испаряется и мигрирует в промежуточные зоны, где достигает максимальной концентрации в связи с белой сульфатной минерализацией, что подтверждает формирование последней из пересыщенных водных растворов. Хлориды и нитраты, образующиеся в процессе окисления, выносятся, частично с компонентами выбросов в атмосферу, и отчасти, мигрируя водными растворами, сохраняя в них свою устойчивость при пересыщении сульфат-ионом.
Главным элементом зоны окисления является сера и ее производные. Окисление серы сопровождается образованием сульфат-иона в условиях достаточного количества кислорода. Часть сульфат-иона мигрирует в атмосферный воздух с парами воды, а значительная его часть при выходе на дневную поверхность в условия низких температур конденсируется на контакте с породами. Охлажденные водные растворы становятся пересыщенными в отношении сульфат-иона, что благоприятствует выделению новых минералов. Именно в этой части ореола окисления отмечается максимальная влажность и концентрация сульфатов. Новообразованные минералы заполняют все существующие поры и трещины, породы приобретают массивность. Поэтому в этой зоне фиксируется пониженные концентрации ряда макро-и микрокомпонентов.
Терриконы являются экологически опасными объектами. Их можно сравнивать с небольшими «спящими» вулканами, выбрасывающими в атмосферу примерно тот же спектр веществ – серную кислоту, сероводород, аммиак, метан, двуокись азота, углекислоту и угарный газ. Основным компонентом выбросов является водяной пар. Вместе с паро-газовыми выбросами в атмосферу со стороны терриконов могут попадать летучие соединения токсичных элементов – ртути, мышьяка, кадмия и др.
Разогрев органической части угля в очагах окисления сопровождается ее термическим разложением, аналогичным процессу пиролиза. При этом образуются вредные летучие органические компоненты. В повышенных концентрациях в породах терриконов установлены:
1. Нефтепродукты в концентрациях до 548, 0 г/т. Максимальные концентрации нефтепродуктов наблюдаются в породе терриконов шахты "Паравичная" №5 и 1-7 "Ветка".
2. Фенолы в концентрациях до 0, 22 г/т. Минимальные концентрации фенола отмечаются в породах терриконов №2 шахты №4 «Ливенка» и №2 шахты «Центрально Заводская» - меньше 0, 01 г/т, максимальные - в породах террикона шахты №11 – до 0, 081 г/т.
3. Формальдегид установлен примерно в одинаковых концентрациях (до 0, 22 г/т) во всех изученных терриконах.
4. Моноэтаноламин зафиксирован в пробах с максимальной концентрацией 6, 25 г/т в породах террикона шахты «Центрально – Заводская». В отвальных массах террикона шахты №4 «Ливенка» обнаружена одна проба с концентрацией моноэтаноламина - 3, 65 г/т.
5. Максимальная концентрация дифенилопропана (2, 36 г/т) фиксируется в породе террикона шахты "Центрально-Заводская" №1.
В тех же пробах выполнялись определения содержаний таких токсичных и вредных химических веществ, как: толуол, метапараксилол, бутил ацетат, хлорбензол, стирол, ацентон, бензол, этилбензол, метапараксилол, ортоксилол, этил ацетат, изопропил бензол, метанол, пиридин, ацетофенон. Из этих компонентов в пробах установлены толуол, метапараксилол, бутил ацетат, хлорбензол, ацентон, бензол, толуол, этилацетат, преимущественно в концентрациях ниже ПДК [2].
Выбросы со стороны терриконов могут распространяться на сотни метров, захватывая большие площади, включая селитебные территории. Компоненты выбросов, осаждаясь на земную поверхность, загрязняют почво-грунты. При этом формируются ореолы рассеивания. Наиболее загрязненными являются заболоченные участки долин рек и днищ балок. Опыт проведения периодического экологического мониторинга почв в пределах г. Донецка показывает, что почво-грунты города имеют повышенный общегородской фон, зачастую превышающий ПДК, для кадмия, мышьяка, ртути, свинца и сульфат-иона. Источниками загрязнения почв данными компонентами являются в том числе выбросы со стороны отвалов.
Сами терриконы и ореолы рассеивания загрязняющих веществ в почвах служат источниками загрязнения водной среды сульфатами и токсичными компонентами. При этом загрязняется поверхностный сток, выщелачивающий растворимые сульфаты с поверхности терриконов и почв, и подземные воды в процессе инфильтрации загрязненных атмосферных осадков. Известно, что поверхностные и подземные воды городской черты имеют высокую минерализацию (более 2 г/л), жесткость (более 15 мг-экв/л), сульфатно-натриевый состав.
Негативные геологические процессы, связанные с терриконами, проявлены в разных аспектах. Водная эрозия их бортов приводит к расширению площади отвалов. Породная масса оказывает дополнительное давление на грунты основания, что может повлиять на изменение их фильтрационных свойств и оказывать локальное воздействие на уровенный режим первого от поверхности водоносного горизонта. Однако самое существенное негативное воздействие терриконы оказывают благодаря формированию зон замещения в грунтах зоны аэрации и в водовмещающих породах. Они проявлены развитием вторичной минерализации. В природных условиях эта минерализация представлена в виде обилия прожилково-вкрапленных карбонатов, развивающихся в зоне аэрации и в водовмещающих породах. В пределах городской территории, где осуществляются выбросы углекислоты, сернистого ангидрида и т.д., карбонатная минерализация замещается гипсом и содовыми минералами. В пределах зон разломов увеличивается не только количество гипса, но и размеры выделений, достигающие 15-20 см в диаметре. Проявляется вертикальная зональность, когда в верхней части зоны аэрации выделяются конкреции и прожилки землистых агрегатов содовых минералов, ниже по разрезу появляется гипс, который далее становится основным техногенным минералом. Эта зональность обусловлена различной растворимостью содовых минералов и гипса в воде. Зоны замещения сопровождаются перераспределением большей части макро- и микрокомпонентов как в грунтах зоны аэрации, так и в водовмещающих породах и в подземных водах. В качестве проводников данных процессов служат разломы или геодинамические активные зоны.
Эта проблема имеет очевидный инженерно-геологический аспект. Опасность процессов антропогенного замещения грунтов основания зданий и сооружений заключается в том, что первичные природные грунты с конкрециями карбонатов обладают достаточно высокими прочностными характеристиками как в сухом, так и во влажном (обводненном) состоянии. В отличие от них загипсованные грунты сохраняют устойчивость лишь в сухом состоянии. Длительное замачивание сопровождается растворением гипса и, соответственно, потерей несущих способностей грунтов. Опасность состоит в том, что гипс слаборастворим водой, имеющей повышенную минерализацию. Изменения прочностных свойств при замачивании проб грунтов в лабораторных условиях могут быть также не установлены. Поэтому построенный, например, жилой дом на таких грунтах может со временем разрушится, что в последнее время не редкость. Пока грунты сухие – дом стоит. Прохудившиеся водопроводные и канализационные сети приводят сначала к затоплению подвалов. Постоянная фильтрация через зону аэрации вод с пониженной минерализацией приводит к растворению гипса и грунты основания теряют свои прочностные свойства.
--> ЧИТАТЬ ПОЛНОСТЬЮ <--