Статья: Элементарное доказательство Великой теоремы Ферма

Идея предлагаемого вниманию читателя элементарного доказательства Великой теоремы Ферма исключительно проста: после разложения чисел a, b, c на пары слагаемых, затем группировки из них двух сумм U' и U'' и умножения равенства a^n + b^n – c^n = 0 на 11^n (т.е. на 11 в степени n, а чисел a, b, c на 11) (k+3)-я цифра в числе a^n + b^n – c^n (где k – число нулей на конце числа a + b – c) не равна 0 (числа U' и U'' умножаются по-разному!). Для постижения доказательства нужно знать лишь формулу бинома Ньютона, простейшую формулировку малой теоремы Ферма (приводится), определение простого числа, сложение двух-трех чисел и умножение двузначного числа на 11. Вот, пожалуй, и ВСЁ! Самое главное (и трудное) – не запутаться в десятке цифр, обозначенных буквами. Формальное описание истории теоремы и библиография в русском тексте опущены.

Доказательство приводится в редакции от 1 июня 2005 года (с учетом дискуссии на мехматовском сайте).

В.С.

ИНСТРУМЕНТАРИЙ: [В квадратных скобках приводится поясняющая, не обязательная информация.]

Используемые обозначения:

Все числа записаны в системе счисления с простым основанием n > 10.

[Все случаи с составным n, кроме n = 2k (который сводится к случаю n = 4), сводятся к случаю

простого n с помощью простой подстановки. Случаи n = 3, 5 и 7 здесь не рассматриваются.]

ak – k-я цифра от конца в числе a (a1 – последняя цифра).

[Пример для a = 1043: 1043 = 1x53 + 0x52 + 4x51 + 3x50; a1 = 3, a2 = 4, a3 = 0, a4 = 1.]

a(k) – окончание (число) из k цифр числа a (a(1) = a1; 1043(3) = 043). Везде в тексте a1 № 0.

[Если все три числа a, b и c оканчиваются на ноль, следует разделить равенство 1° на nn.]

(ain)1 = ai и (ain - 1)1 = 1 (см. Малую теорему Ферма для ai № 0). (0.1°)

(n + 1)n = (10 + 1)n = 11n = …101 (см. Бином Ньютона для простого n).

Простое следствие из бинома Ньютона и малой теоремы Ферма для s № 1 [a1 № 0]:

если цифра as увеличивается/уменьшается на 0 < d < n,

то цифра ans+1 увеличивается/уменьшается на d (или d + n, или d – n). (0.2°)

[В отрицательных числах цифры считаются отрицательными.]

***

(1°) Допустим, что an + bn – cn = 0 .

Случай 1: (bc)1 ? 0.

(2°) Пусть u = a + b – c, где u(k) = 0, uk+1 ? 0, k > 0 [известно, что в 1° u > 0 и k > 0].

(3°) Умножим равенство 1° на число d1n (см. §§2 и 2a в Приложении) с целью превратить

цифру uk+1 в 5. После этой операции обозначения чисел не меняются

и равенство продолжает идти под тем же номером (1°).

Очевидно, что и в новом равенстве (1°) u = a + b – c, u(k) = 0, uk+1 = 5.

(1*°) И пусть a*n + b*n – c*n = 0, где знаком “*” обозначены записанные в каноническом виде числа в равенстве (1°) после умножения равенства (1°) на 11n .

(4°) Введем в указанной здесь очередности следующие числа: u, u' = a(k) + b(k) – c(k),

u'' = u – u' = (a – a(k)) + (b – b(k)) – (c – c(k)), v = (ak+2 + bk+2 – ck+2)1, u*' = a*(k) + b*(k) – c*(k),

--> ЧИТАТЬ ПОЛНОСТЬЮ <--

К-во Просмотров: 208
Бесплатно скачать Статья: Элементарное доказательство Великой теоремы Ферма