Статья: Флуориметрический метод контроля содержания нефтепродуктов в водах
0,93
Масло моторное МС-20
0,77
Дизельное топливо летнее
0,92
Дизельное топливо зимнее
0,68
Kеросин
0,24
Бензин АИ-92
0,09
Для градуировки анализатора нами рекомендован стандартный образец, представляющий собой раствор масла турбинного Т-22 в гексане, который в текущем году получил статус государственного (ГСО 7950-2001). Применение такого стандартного образца позволяет учесть корреляционную связь между содержанием фракции, отвечающей за формирование аналитического сигнала, и общим содержанием нефтепродуктов.
Для уточнения возможной области применения флуориметрического метода анализа под эгидой Главного управления аналитического контроля Минприроды России в 1994-1996 гг. было проведено межлабораторное исследование, в котором приняли участие лаборатории ряда инспекций Системы государственного экологического контроля, ряда центров Госсанэпиднадзора, испытательных центров, промышленных предприятий. При этом были обработаны результаты анализа более 400 проб воды (питьевой, природной, сточной), проанализированных двумя методами - флуориметрическим и методом ИК-спектроскопии. К сожалению, в большинстве лабораторий использовались анализаторы нефтепродуктов, измеряющие интегральное поглощение, а не спектрометры.
При проведении испытаний особое внимание обращалось на соблюдение требований к отбору проб. Для каждого метода анализа последовательно отбиралась своя порция пробы в отдельную стеклянную посуду. Не допускался отбор общей пробы и анализ ее частей разными методами, поскольку при этом нельзя обеспечить однородность анализируемого материала вследствие сорбции нефтепродуктов на стенках.
Для каждой пробы находили расхождение (d,% ) между результатами анализа, полученными флуориметрическим методом и методом ИК-спектроскопии, которое относили к среднему арифметическому:
(1)
где ХИК - результат анализа пробы методом ИК-спектроскопии, мг/дм3 ;
Хфл - результат анализа про-бы флуориметрическим методом, мг/дм3 .
На рис. 3 представлена диаграмма, показывающая, что в 75% случаев расхождение не превышает 30%, в 15% случаев составляет 30-50%. Учитывая достаточно высокие значения характеристики погрешности обоих методов [3, 10], можно утверждать, что почти в 90% случаев расхождение между результатами, полученными двумя методами, не выходит за границы, определяемые условием (2) и обусловленные суммированием погрешностей каждого метода:
(2)
где ИК и фл - характеристики погрешности методов ИК-спектроскопии и флуориметрического соответственно, мг/дм3 .
Рис. 3. Частота появления результатов в зависимости от относительного отклонения d .
На рис. 4 приведена корреляционная зависимость между результатами, полученными двумя методами.
Рис.4. Корреляционная зависимость между результатами определения массовой концентрации нефтепродуктов флуориметрическим и ИК-спектроскопическим методами.
Мы полагаем, что полученные результаты можно объяснить тем, что в большинстве анализируемых проб основу загрязнения составляют средние и тяжелые нефтепродукты, для которых относительная интенсивность флуоресценции приблизительно постоянна (табл. 1).
Представленные результаты показывают, что в настоящее время достаточно трудно сделать однозначный выбор в пользу какого-то одного метода анализа. Нам представляется, что для многих случаев оптимальным окажется сочетание флуориметрического и газохроматографического методов. Первый, как высокочувствительный и экспрессный, позволяет проводить исследование большого числа образцов, а метод газовой хроматографии может использоваться для подтверждения результатов, а также для решения более сложных аналитических задач, таких как идентификация источников загрязнения вод нефтепродуктами.
Представленные экспериментальные данные получены с использованием спектрофлуориметра "Флюорат-02-Панорама" и анализатора жидкости "Флюорат-02", производимых ООО "Люмэкс".
Список использованной литературы