Статья: Графен и его свойства

Кристаллическая структура материала находит отражение во всех его физических свойствах. В особенности сильно от порядка, в котором расположены атомы в кристаллической решётке, зависит зонная структура кристалла.

Зонная структура графена рассчитана в статье[1]в приближении сильно связанных электронов. На внешней оболочке атома углерода находится 4 электрона, три из которых образуют связи с соседними атомами в решётки при перекрыванииsp ²-гибридизированныхорбиталей, а оставшийся электрон находится в 2pz -состоянии (именно это состояние отвечает вграфитеза образование межплоскостных связей, а в графене — за образование энергетических зон). Вприближении сильно связанных электроновполнаяволновая функциявсех электронов кристалла записывается в виде суммы волновых функций электронов из разных подрешёток

где коэффициент λ — некий неизвестный (вариационный) параметр, который определяется из минимума энергии. Входящие в уравнение волновые функцииφ1иφ2записываются в виде суммы волновых функций отдельных электронов в различных подрешётках кристалла


Здесь и —радиус-векторы, направленные на узлы кристаллической решётки, а и — волновые функции электронов, локализованных вблизи этих узлов.

В приближении сильно связанных электронов интеграл перекрытия (γ0), то есть сила взаимодействия, быстро спадает на межатомных расстояниях. Другими словами — взаимодействие волновой функции центрального атома с волновыми функциями атомов, расположенных на зелёной окружности (см. Рис. 4), вносит основной вклад в формирование зонной структуры графена.

Энергетический спектр электронов в графене имеет вид (здесь учтены только ближайшие соседи, координаты которых задаются по формуле (1.3))

где знак «+» соответствует электронам, а «-» — дыркам.

5.1.3Линейный закон дисперсии


Из уравнения (2.4) следует, что вблизи точек соприкосновения валентной зоны и зоны проводимости (K и K')закон дисперсиидля носителей (электронов) в графене представляется в виде:

ГдеvF —скорость Ферми(экспериментальное значениеvF =106м/с) , k — модуль волнового вектора в двумерном пространстве с компонентами отсчитанного от K или K ' точек Дирака, — постоянная Планка. Здесь следует отметить, что такого рода спектром обладаетфотон, поэтому говорят, чтоквазичастицы(электроны и дырки, энергия для которых выражается формулой ) в графене обладаютнулевой эффективной массой. Скорость ФермиvF играет роль «эффективной» скорости света. Так как электроны и дырки — фермионы, то они должны описываться уравнением Дирака, но с нулевой массой частиц и античастиц (аналогично уравнениям для безмассовых нейтрино). Кроме того, так как графен — двухдолинный полуметалл, то уравнение Дирака должно быть модифицировано для учёта электронов и дырок из разных долин (K, K'). В итоге мы получим восемь дифференциальных уравнений первого порядка, которые включают такие характеристики носителей, как принадлежность к определённой подрешётке (A, B) кристалла, нахождение в долине (K, K') и проекцию спина. Решения этих уравнений описывают частицы с положительной энергией (электроны) и античастицы с отрицательной энергией (дырки). Обычно спин электрона не принимают во внимание (когда отсутствуют сильные магнитные поля) и гамильтониан уравнения Дирака записывается в виде:


где — вектор-строка, состоящая изматриц Паули.

Линейный закон дисперсии приводит к линейной зависимости плотности состояний от энергии, в отличие от обычных двумерных систем с параболическим законом дисперсии, гдеплотность состоянийне зависитот энергии. Плотность состояний в графене задаётся стандартным способом

где выражение под интегралом и есть искомая плотность состояний (на единицу площади):

Гдеgs иgv — спиновое и долинное вырождение соответственно, а модуль энергии появляется, чтобы описать электроны и дырки одной формулой. Отсюда видно, что при нулевой энергии плотность состояний равна нулю, то есть отсутствуют носители (при нулевой температуре).

Концентрация электронов задаётся интегралом по энергии


ГдеEF —уровень Ферми. Если температура мала по сравнению с уровнем Ферми, то можно ограничиться случаем вырожденного электронного газа

Концентрацией носителей управляют с помощью затворного напряжения. Они связаны простым соотношением(при толщине диэлектрика 300 нм).

Здесь также следует обратить внимание на тот факт, что появление линейного закона дисперсии при рассмотрении гексагональной решётки не является уникальной особенностью для данного типа кристаллической структуры, а может появляться и при существенном искажении решётки вплоть доквадратной решётки.

К-во Просмотров: 435
Бесплатно скачать Статья: Графен и его свойства