Статья: Хроногеометрия несвязных гранично однородных порядков в аффинном пространстве
644077 Омск, пр. Мира,55-A
Изучение упорядоченных аффинных пространств An, n>2, связано, как известно, прежде всего с основаниями теории относительности [1]. Следуя же квантовой теории, мы не можем распространять причинно-следственные связи на явления микромира и поэтому вынуждены рассматривать так называемые "несвязные порядки". Предполагая при этом, что скорость передачи взаимодействия и в микромире ограничена, автор получает результаты, изложенные в данной статье.
Рассмотрим в n-мерном аффинном пространстве An, n>2, несвязный порядок , заданный семейством подмножеств An, для которого выполнены условия: (1) ; (2) если , то ; (3) если , то . Несвязность порядка означает, что . Предполагаем далее, что верно следующее: (i) ; (ii) для любой .
Замечание 1. Для любого множества A, будем через , int A, и обозначать соответственно замыкание, внутренность и границу множества A.
Назовем внешним конусом множества Px следующее множество:
где lxy - луч, идущий из точки x и проходящий через точку . Считаем далее, что Cx - конус "с острой вершиной", то есть не содержит прямой. Известным является факт [1], что семейство внешних конусов задает порядок в An.
Гомеоморфизм , для которого f(Px)=Pf(x) для любой точки , назовем порядковым -автоморфизмом. Множество всех порядковых -автоморфизмов будет группой, которую обычно обозначают . Подгруппа группы , сохраняющая фиксированную точку , обозначается .
Порядок называется - однородным или гранично однородным, если для любых найдется такой, что f(x)=y.
Имеет место следующая
Теорема. Пусть , n>2, инвариантной относительно группы параллельных переносов несвязный порядок в n-мерном аффинном пространстве An, для которого выполнены условия:
(1) существует семейство равных и параллельных телесных одинарных замкнутых выпуклых конусов с острой вершиной такое, что для любых и ;
(2) порядок - гранично однородный.
Тогда любой порядковый -автоморфизм будет аффинным преобразованием.
Доказательство .
Для любой точки рассмотрим следующее множество
где объединение берется по всем -автоморфизмам f из стабилизатора таких, что f(v) = uo .
Нетрудно видеть, что , так как тождественное преобразование id, очевидно, принадлежит и для него имеем: id(u0) = u0, и поэтому . В частности, , , так как для любого f(e) = e.
По условию (1) и, кроме того, если , то
то есть семейство сохраняется -автоморфизмами из .
Замечание 2. Не следует думать, что в определении множества , , f(v) = x точка v- фиксированная. Точка , то есть v- точка из орбиты точки x, для которой определяется множество Dx.
Рассмотрим далее множества
Легко видеть, что (здесь C-v, K-v- это конусы, центрально симметричные конусам Cv и Kv относительно точки v). В самом деле, для любой точки , имеем (семейство задает порядок в An). Поэтому для , f(v) = u0 имеем и . Если же то и . Это противоречит тому, что . Значит для любой точки .
Отметим теперь следующее: каждое множество Dx содержит Cx, а каждое множество D-x- содержит конус C-x. Далее, поскольку Kx, K-x- выпуклые конусы с острой вершиной, то существует гиперплоскость Tx такая, что , , где , - полупространства, на которые Tx разбивает An. Утверждается, что в качестве Tx можно выбрать такую гиперплоскость, которая пересекает конус Cy, по компактному множеству. Известно, что по отношению к замкнутому однородному выпуклому телесному конусу Ce с острой вершиной все гиперплоскости, имеющие с непустое пересечение, можно разделить на три непересекающихся класса. К первому классу A1 отнесем все гиперплоскости, пересекающие по компактному множеству. Во второй класс A2 попадут гиперплоскости, имеющие с некомпактное пересечение и параллельные при этом какой-либо прямолинейной образующей конуса Ce, принадлежащей его границе . Все остальные гиперплоскости будут принадлежать к третьему классу A3. Нетрудно видеть, что вышеупомянутая гиперплоскость Tx не может быть параллельна какой-либо гиперплоскости из класса A3. Это следует из того, что , а и также , , что противоречит выбору Tx.
Если же Tx параллельна гиперплоскости из класса A2, то и , что также противоречит выбору Tx. Значит Tx параллельна некоторой гиперплоскости из класса A1. Итак, пусть - эта та самая гиперплоскость, о которой идет речь выше, то есть Te параллельна гиперплоскости Tv из класса A1 и разбивает An на два полупространства и такие, что , . Очевидно, что в этом случае найдется гиперплоскость Ty0, параллельная Te, такая, что и множество - компактно. Если теперь точка , то . Поскольку и порядок - гранично однородный, то для любой точки будет верно следующее:
--> ЧИТАТЬ ПОЛНОСТЬЮ <--