Статья: Креационизм и эволюционизм: методологический анализ противостояния
Словом, в настоящее время в естествознании осуществлена переборка множества вариантов необходимых условий для химической эволюции.
Помимо усилий по выявлению необходимых благоприятных условий для химической эволюции, создаются теории, в которых объясняются варианты химической эволюции при возможных неблагоприятных условиях. Так, например, на первичных стадиях химической эволюции образованию органических макромолекул препятствовали бы процессы их окислительной деструкции. Однако есть научные основания считать, что на ранних этапах истории Земли ее атмосфера была восстановительной и состояла она из аммиака, воды, диоксида углерода. Свободный кислород, который разрушал бы органические соединения быстрее, чем они синтезировались бы, накопился в атмосфере только после появления на Земле жизни, а именно в результате деятельности фотосинтетических организмов. Таким образом, снимается еще один “запрет” — предположение о невозможности молекулярной органической эволюции в связи с активными окислительными процессами в атмосфере Земли.
Можно сказать, что в современной биосфере имеются два фактора, препятствующие началу нового эволюционного процесса от молекулярного уровня: химический (окислительный) и биологический (обусловленный активной минерализацией органического вещества в природе живыми организмами). Второй фактор относится только к частной проблеме — обоснованию невозможности повторного начала эволюционного пути при наличии в окружающей среде живых организмов.
Конечно, в наибольшей степени возможность образования в истории Земли живых организмов без вмешательства извне выводится из предположения, что главным событием в ускорении эволюционного процесса было образование высокомолекулярных соединений, которые имеют большие возможности, по сравнению с малыми молекулами сохранить свою индивидуальность в различных природных превращениях. Основными объектами рассмотрения здесь, естественно, выступают биополимеры типа белков и нуклеиновых кислот.
В ряде экспериментальных работ (например, в физико-химических экспериментах, в которых обнаруживалось образование аминокислот при облучении простейших соединений УФ-светом или индуцировании электрических разрядов) показана возможность образования в естественных условиях биомолекул, но этого факта, конечно, далеко не достаточно для обоснования необходимости или возможности предбиологической эволюции. Дело в том, что в таких системах быстро наступает состояние динамического равновесия, когда процессы синтеза уравновешиваются процессами деструкции.
Надо заметить, что современные исследования белков находятся в состоянии взаимообогащения знаний с эволюционными представлениями в пограничных областях химии, физики и биологии. О роли структурных исследований белков в этом плане сообщается, например, следующее: «Сравнение первичных структур белков, выполняющих одинаковые функции в разных организмах, приводит к следующим интересным выводам. Во-первых, различие первичных структур в целом тем больше, чем дальше отстоят эволюционно организмы-хозяева; для белков, выполняющих эволюционно новые функции, различия больше, чем для старых. Во-вторых, даже в пределах одного вида существуют индивидуальные различия первичных структур белков; некоторые из них практически не отражаются на процессе функционирования, другие отражаются заметно» [Шамин, 1986, с. 293].
Взаимосвязь эволюционных, временных изменений в белковых компонентах живых организмов с их структурой позволяет обогатить методологический арсенал современной эволюционной теории. Так, «фактическое число аминокислотных различий между двумя видами может служить мерой времени, прошедшего после дивергенции их от общего предка» [Рис, 1988, с.55].
Характерный пример попытки объяснить эволюционный процесс, начиная хотя бы с макромолекул, — представления М.Эйгена об объединении самовоспроизводящихся молекулярных образований ограниченных размеров в новую более сложную устойчивую систему, способную к эволюционным изменениям на новом уровне. Такой принцип прогрессивной самоорганизации Эйген назвал “гиперцикл” [Эйген, 1982]. В данном случае мы имеем дело с гипотезой, в которой делается попытка объяснить один из этапов предбиологической эволюции постулированием “все той же” самоорганизации. “Все той же” в том смысле, что слово “самоорганизация”, относимое к естественным природным процессам, означает не более чем слово “эволюция”, т.е. констатирует нечто и мало что объясняет.
В связи с дальнейшими исследованиями информационных процессов в живых системах с участием ДНК и РНК обсуждаются возможности происхождения жизни с участием первичных ДНК с их саморепликацией и дарвиновским естественным отбором. Однако и для таких более поздних этапов химической эволюции, когда необходимо предположить функционирование предбиологических систем с участием макромолекул типа биокатализаторов и информационно-регуляционных макромолекул типа нуклеиновых кислот, всегда вставала проблема малой вероятности образования таких систем.
Для решения этой проблемы М.Кальвин, Ф.Крик, Л.Оргелл и М.Эйген стали выдвигать новые гипотезы о том, что “жизнь началась с простых автокаталитических, т.е. самовоспроизводящихся молекул” и что “именно нуклеиновые кислоты, а не белки способны выполнять эту роль” (см.: [Шульц, 1982, с. 9—12]). Эти подходы в последнее время нашли дополнительные научные основания, поскольку недавно было показано, что биокатализаторами могут быть не только белки-ферменты, но и интронные участки РНК (в процессе перевода РНК в активную форму происходят вырезание интронных участков и сшивка содержащих генетическую информацию экзонных участков). Эволюционисты дали общее наименова